10- II. 青蛙跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:0 <= n <= 100

图解

在这里插入图片描述

  • 解一

迭代思路
  • n阶台阶有f(n)种解法
  • f(0)=1;f(1)=1;f(2)=2;f(3)=5…f(n)=f(n-1)+f(n-2)
代码
class Solution {
    public int numWays(int n) {
        if(n==0){
            return 1;
        }
        int a=1;
        int b=1;
        //sum初始值为1若n=1直接就返回sum=1
        int sum=1;
        for(int i=2;i<=n;i++){
            sum=(a+b)%1000000007;
            a=b;
            b=sum;
        }
        return sum;
    }
}
复杂度

时间复杂度: O(n)循环n次
空间复杂度: O(1)变量都是常数大小

  • 解二

思路-动态规划
  • 状态定义:设dp为一维数组其中dp[i]的值代表第i个数字
    转移方程:dp[i]=dp[i-1]+dp[i-2]对应f(n)=f(n-1)+f(n-2)
    初始状态:dp[0]=1,dp[1]=1
    返回值:dp[n]即斐波那契数列第n个数
代码
class Solution {
    public int numWays(int n) {
        if(0==n){
            return 1;
        }
        //返回dp[n]数组大小为n的话就不包括dp[n]
        int[] dp=new int[n+1];
        dp[0]=1;
        dp[1]=1;

        for(int i=2;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
            dp[i]=dp[i]%1000000007;
        }
        return dp[n];

    }
}
复杂度

**时间复杂度:**O(n)循环n次
**空间复杂度:**O(n)额外数组dp大小n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值