一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:0 <= n <= 100
图解
迭代思路
- n阶台阶有f(n)种解法
- f(0)=1;f(1)=1;f(2)=2;f(3)=5…f(n)=f(n-1)+f(n-2)
代码
class Solution {
public int numWays(int n) {
if(n==0){
return 1;
}
int a=1;
int b=1;
//sum初始值为1若n=1直接就返回sum=1
int sum=1;
for(int i=2;i<=n;i++){
sum=(a+b)%1000000007;
a=b;
b=sum;
}
return sum;
}
}
复杂度
时间复杂度: O(n)循环n次
空间复杂度: O(1)变量都是常数大小
思路-动态规划
- 状态定义:设dp为一维数组其中dp[i]的值代表第i个数字
转移方程:dp[i]=dp[i-1]+dp[i-2]对应f(n)=f(n-1)+f(n-2)
初始状态:dp[0]=1,dp[1]=1
返回值:dp[n]即斐波那契数列第n个数
代码
class Solution {
public int numWays(int n) {
if(0==n){
return 1;
}
//返回dp[n]数组大小为n的话就不包括dp[n]
int[] dp=new int[n+1];
dp[0]=1;
dp[1]=1;
for(int i=2;i<=n;i++){
dp[i]=dp[i-1]+dp[i-2];
dp[i]=dp[i]%1000000007;
}
return dp[n];
}
}
复杂度
**时间复杂度:**O(n)循环n次
**空间复杂度:**O(n)额外数组dp大小n