正态逆伽马分布 NIG

Γ \Gamma Γ 函数

Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \Gamma(\alpha)= \int_0^{+\infty}x^{\alpha-1}e^{-x}dx Γ(α)=0+xα1exdx

Γ \Gamma Γ 分布

含义

  • 指数分布解决的问题是:要等到一个随机事件发生,需要经历多久时间1
  • 伽玛分布解决的问题是:要等到n个随机事件都发生,需要经历多久时间
  • 伽玛分布可以看作是n个指数分布的独立随机变量的加总,即: n 个 E x p o n e n t i a l ( λ ) n个Exponential(λ) nExponential(λ)随机变量 → Γ ( n , λ ) \rightarrow \Gamma(n,λ) Γ(n,λ
  • 泊松分布解决的是:在特定时间里发生n个事件的机率,因此可以理解为“伽玛分布=指数分布*泊松分布”

概率密度函数

随机变量 X X X为一件事发生 α α α次所需要的时间,即 X ∼ Γ ( α , β ) X\sim \Gamma(\alpha,\beta) XΓ(α,β),其中 α α α为形状参数(shape parameter),表示事件发生的次数, β β β为尺度参数(scale parameter),表示一次事件发生的频率

密度函数为:
f ( x , β , α ) = β α Γ ( α ) x α − 1 e x p ( − β x ) f(x,\beta,\alpha)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}exp(-\beta x) f(x,β,α)=Γ(α)βαxα1exp(βx)

均值和方差为:
μ = α β \mu =\frac{\alpha}{\beta} μ=βα

σ 2 = α β 2 \sigma^2 =\frac{\alpha}{\beta^2} σ2=β2α

特殊形式:

α > 1 \alpha>1 α>1时为指数分布2 f ( x , β , α ) = β Γ ( 1 ) x 0 e x p ( − β x ) = β ⋅ e x p ( − β x ) f(x,\beta,\alpha)=\frac{\beta}{\Gamma(1)}x^{0}exp(-\beta x)=\beta·exp(-\beta x) f(x,β,α)=Γ(1)βx0exp(βx)=βexp(βx)

t=0:0.1:20;
y=gampdf(t,1,0.5);
plot(t,y);
hold on
y=gampdf(t,2,0.5);
plot(t,y);
y=gampdf(t,3,0.5);
plot(t,y);
y=gampdf(t,5,1);
plot(t,y);
y=gampdf(t,9,2);
plot(t,y);
legend('alpha=1,beta=0.5','alpha=2,beta=0.5','alpha=3,beta=0.5',...
    'alpha=5,beta=1','alpha=9,beta=2')
axis([0 16 0 1])

在这里插入图片描述

Γ \Gamma Γ 分布

θ − 1 \theta ^{-1} θ1满足参数为 α , β \alpha ,\beta αβ Γ \Gamma Γ分布,则 θ \theta θ满足逆 Γ \Gamma Γ分布,记为 X ∼ I G ( α , β ) X\sim IG(\alpha ,\beta) XIG(α,β),逆 Γ \Gamma Γ 分布是正态方差的共轭先验分布

θ ∼ I n v − G a m m a ( α , β ) \theta \sim Inv-Gamma(\alpha,\beta) θInvGamma(α,β)

p ( θ ) ∼ I n v − G a m m a ( θ ∣ α , β ) p(\theta) \sim Inv-Gamma(\theta|\alpha,\beta) p(θ)InvGamma(θα,β)

s h a p e : α > 0 , s c a l e : β > 0 shape:\alpha>0,scale:\beta>0 shapeα>0scaleβ>0

p ( θ ) = β α Γ ( α ) θ − α − 1 e x p ( − β x ) p(\theta)=\frac{\beta^\alpha}{\Gamma(\alpha)}\theta^{-\alpha-1}exp( -\frac{\beta}{x}) p(θ)=Γ(α)βαθα1exp(xβ)

E ( θ ) = β α − 1 E(\theta) =\frac{\beta}{\alpha-1} E(θ)=α1β

V a r ( θ ) = β 2 ( α − 1 ) 2 ( α − 2 ) Var(\theta) =\frac{\beta^2}{(\alpha-1)^2(\alpha-2)} Var(θ)=(α1)2(α2)β2

m o d e ( θ ) = β α + 1 mode(\theta) =\frac{\beta}{\alpha+1} mode(θ)=α+1β

正态逆 Γ \Gamma Γ 分布

Normal-inverse gamma distribution 又称 normal-scaled inverse gamme distriution,是正态分布的先验分布

PDF(概率密度函数):
P r ( μ , σ 2 ) = γ σ 2 π β α Γ [ α ] ( 1 σ 2 ) α + 1 e x p [ − − 2 β + γ ( δ − μ ) 2 2 σ 2 ] Pr(\mu,\sigma^2)=\frac{\sqrt\gamma}{\sigma\sqrt{2\pi}}\frac{\beta^\alpha}{\Gamma[\alpha]}(\frac{1}{\sigma^2})^{\alpha+1}exp[-\frac{-2\beta+\gamma(\delta-\mu)^2}{2\sigma^2}] Pr(μ,σ2)=σ2π γ Γ[α]βα(σ21)α+1exp[2σ22β+γ(δμ)2]
P r ( μ , σ 2 ) = N o r m I n v G a m μ , σ 2 [ α , β , γ , δ ] Pr(\mu,\sigma^2)=NormInvGam_{\mu,\sigma^2}[\alpha,\beta,\gamma,\delta] Pr(μ,σ2)=NormInvGamμ,σ2[α,β,γ,δ]

在这里插入图片描述

σ 2 ∼ Γ − 1 ( α , β ) , α λ β ( x − μ ) ∼ t ( 1 ) \sigma^2\sim\Gamma^{-1}(\alpha,\beta),\sqrt{\frac{\alpha\lambda}{\beta}}(x-\mu)\sim t(1) σ2Γ1(α,β),βαλ (xμ)t(1)

正态逆高斯分布

概率密度函数
f x ( x ) = α δ π q ( x ) ⋅ e x p [ p ( x ) ] ⋅ K 1 [ α q ( x ) ] f_x(x)= \frac{\alpha \delta}{\pi q(x)}·exp[p(x)]·K_1[\alpha q(x)] fx(x)=πq(x)αδexp[p(x)]K1[αq(x)]

其中: p ( x ) = δ α 2 − β 2 + β ( x − μ ) p(x)=\delta\sqrt{\alpha^2-\beta^2}+\beta(x-\mu) p(x)=δα2β2 +β(xμ)

q ( x ) = δ 2 + ( x 2 − μ 2 ) q(x)=\sqrt{\delta^2+(x^2-\mu^2)} q(x)=δ2+(x2μ2)

K d ( ⋅ ) K_d(·) Kd()为索引为 d d d的第二类修正贝塞尔函数

N I G NIG NIG分布由 ( α , β , μ , δ ) (\alpha,\beta,\mu,\delta) (α,β,μ,δ)四个参数表征:

  • 参数 α \alpha α为特征因子,控制分布衰减速度,越小衰减越慢,拖尾越严重
  • 参数 β \beta β为偏斜因子,决定分布偏斜程度
  • 参数 μ \mu μ为平移参数
  • 参数 δ \delta δ为尺度参数

f x ( x ) = α δ π δ 2 + ( x 2 − μ 2 ) ⋅ e x p [ δ α 2 − β 2 + β ( x − μ ) ] ⋅ K 1 [ α δ 2 + ( x 2 − μ 2 ) ] f_x(x)= \frac{\alpha \delta}{\pi \sqrt{\delta^2+(x^2-\mu^2)}}·exp[\delta\sqrt{\alpha^2-\beta^2}+\beta(x-\mu)]·K_1[\alpha \sqrt{\delta^2+(x^2-\mu^2)}] fx(x)=πδ2+(x2μ2) αδexp[δα2β2 +β(xμ)]K1[αδ2+(x2μ2) ]
一般为对称分布, β = μ = 0 \beta=\mu=0 β=μ=0,则概率密度为:
f x ( x ) = α δ ⋅ e x p ( δ α ) π δ 2 + x 2 ⋅ K 1 [ α δ 2 + x 2 ] f_x(x)= \frac{\alpha \delta·exp(\delta\alpha)}{\pi \sqrt{\delta^2+x^2}}·K_1[\alpha \sqrt{\delta^2+x^2}] fx(x)=πδ2+x2 αδexp(δα)K1[αδ2+x2 ]

参考链接

神奇的伽玛函数 (上)
神奇的伽玛函数 (下)
MATLAB概率统计函数(1)
Gamma分布与逆Gamma分布 by weixin_41875052
Gamma分布和逆Gamma分布 by 萌即正义Zitrone
《计算机视觉:模型、学习和推理》一3.6 正态逆伽马分布
正态逆威沙特分布(Normal-Inverse-Wishart)
兰小艳, 陈莉, 贾建,等. 一种改进正态逆高斯分布模型的图像去噪算法[J]. 计算机应用研究, 2017(10):314-318.


  1. 怎么来理解伽玛(gamma)分布? ↩︎

  2. Γ ( 1 ) = 1 \Gamma(1)=1 Γ(1)=1 ↩︎

  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
伽马分布伽马分布的倒数分布,可以用来表示一个未知参数的精度。如果我们假设一个参数 $\theta$ 的先验分布伽马分布 $IG(\alpha,\beta)$,那么它的概率密度函数为 $$p(\theta) = \frac{\beta^\alpha}{\Gamma(\alpha)} \theta^{-\alpha-1} e^{-\frac{\beta}{\theta}}, \quad \theta > 0$$ 其中,$\alpha$ 和 $\beta$ 是先验分布的两个超参数,$\Gamma(\cdot)$ 是伽马函数。当 $\alpha = 1$ 时,伽马分布退化为一个指数分布。 如果我们已知一条退化轨迹后期基本符合线性,并且要预测该退化轨迹后期的退化,可以将伽马分布作为参数的先验分布,对参数进行贝叶斯估计。先验分布的两个超参数 $\alpha$ 和 $\beta$ 可以根据先验知识或经验确定。如果没有先验知识,可以使用最大后验估计(MAP)方法来估计这两个超参数。具体地,可以使用贝叶斯公式计算后验分布,并找到使后验分布最大化的超参数值。在 MATLAB 中,可以使用 `fitdist` 函数拟合伽马分布,并使用 `mle` 函数估计超参数值,例如: ```matlab % 生成伽马分布的随机样本 alpha = 2; beta = 3; x = 1 ./ gamrnd(alpha, 1/beta, [1000, 1]); % 拟合伽马分布并估计超参数值 pd = fitdist(x, 'InverseGamma'); [params, ~] = mle(x, 'distribution', 'InverseGamma'); alpha_hat = params(1); beta_hat = params(2); ``` 其中,`alpha` 和 `beta` 是伽马分布的超参数,`x` 是伽马分布的随机样本,`pd` 是拟合后的伽马分布对象,`params` 是使用最大似然估计得到的超参数值,`alpha_hat` 和 `beta_hat` 分别是估计的超参数值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值