样例输入:
3
7
1
6
1
样例输出:
6 13
样例解释:
最初三张椅子的人数分别为 1 6 1
接下来来了7个人。
可能出现的情况为{1 6 8},{1,7,7},…,{8,6,1}
相对应的k分别为8,7,…,8
其中,状态{1,13,1}的k = 13,为mx
状态{4,6,5}和状态{5,6,4}的k = 6,为mn
这一题,对于mx,很明显就是最开始的最大值加上新加入的人,mn则是尽量把新加入的人分到除了刚开始拥有最多人的凳子外的其余凳子上,尽量不要让有最多人的凳子再增加人。所以,我们先计算除了刚开始拥有最多人的凳子外的其他凳子与最多人数的差距temp,与新加入的人数y比较,如果小于等于,那么mn就是最开始的最多人,如果大于,则temp先减去y,然后每次减x,表示x张凳子每个凳子分配一个人,循环直到temp小于等于0。那么分配的次数加上最开始的最大人数就是mn。
以下是完整代码:
#include<iostream>
using namespace std;
int a[200];
int x,y;
int mx,mn,temp;
int main()
{
mx=0,mn=0,temp=0;
cin>>x>>y;
for(int i=0;i<x;i++)
{
cin>>a[i];
if(mx<a[i])
{
mx=a[i];//先记录当前的最大值
}
}
for(int i=0;i<x;i++)
{
temp=temp+mx-a[i];//temp记录的是每张凳子的人数与最大值的差距之和
}
if(temp>=y)//说明y个人可以完全分配到除有最大人数的凳子以外的凳子而不超过最大值
{
mn=mx;
}
else
{
int cnt=0;
int t=0;
t=y-temp;//先分配,让所有的凳子都坐mx个人
while(t>0)
{
t=t-x;//每张凳子分配一个人
cnt++;
}
mn=mx+cnt;
}
mx=mx+y;
cout<<mn<<" "<<mx;
}