描述
某石油公司计划建造一条由东向西的主输油管道。该管道要穿过一个有n口油井的油田。从每口油井都要有一条输油管道沿最短路经(或南或北)与主管道相连。
如果给定n口油井的位置,即它们的x坐标(东西向)和y坐标(南北向),应如何确定主管道的最优位置,即使各油井到主管道之间的输油管道长度总和最小的位置?
给定n口油井的位置,编程计算各油井到主管道之间的输油管道最小长度总和。
输入
第1行是一个整数n,表示油井的数量(1≤n≤10 000)。
接下来n行是油井的位置,每行两个整数x和y
(﹣10 000≤x,y≤10 000)。
输出
各油井到主管道之间的输油管道最小长度总和。
输入输出样例
输入样例
5
1 2
2 2
1 3
3 -2
3 3
输出样例
6
分析
设n口油井的位置分别为 Pi=(xi,yi),i=1~n。由于主输油管道是东西向的,因此可用其主轴线的y坐标唯一确定其位置。主管道的最优位置y应该满足:
由中位数定理可知,y是中位数。
代码
方法一:对数组a排序(一般是升序),取中间的元素
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n; //油井的数量
int x; //x坐标,读取后丢弃
int a[1000]; //y坐标
cin>>n;
for(int k=0; k<n; k++)
cin>>x>>a[k];
sort(a,a+n); //按升序排序
//计算各油井到主管道之间的输油管道最小长度总和
int min=0;
for(int i=0; i<n; i++)
min += (int)fabs(a[i]-a[n/2]);
cout<<min<<endl;
}
方法二:采用分治策略求中位数
#include <iostream>
#include <cmath>
using namespace std;
#define NUM 1001
int a[NUM];
int select(int left, int right, int k)
{
if (left >= right)
return a[left];
int i = left;
int j = right+1;
int pivot = a[left];
while (true)
{
do
{
i = i+1;
}
while (a[i] < pivot);
do
{
j = j-1;
}
while (a[j] > pivot);
if (i >= j)
break;
swap(a[i], a[j]);
}
if (j-left+1 == k)
return pivot;
a[left] = a[j];
a[j] = pivot;
if (j-left+1 < k)
return select(j+1, right, k-j+left-1);
else
return select(left, j-1, k);
}
int main()
{
int n;
int x;
int y;
cin>>n;
for (int i=0; i<n; i++)
cin>>x>>a[i];
y = select(0, n-1, n/2);
int min=0;
for(int i=0; i<n; i++)
min += (int)fabs(a[i]-y);
cout<<min<<endl;
return 0;
}