【数学建模】下料问题

数学建模 专栏收录该内容
7 篇文章 8 订阅

下料问题概述

下料问题生产中通过切割、剪裁、冲压等手段,将原材料加工成规定大小的成材.

优化问题按照工艺要求,确定下料方案,使所用材料最省,或利润最大.

钢管切割问题(一维)

题目1

在这里插入图片描述
如何下料最省?

分析

1、下料最省的标准(也就是最后的目标函数)

  • 原料钢管剩余总余量最小;
  • 所用原料钢管总根数最少.

2、由于采用不同切割模式太多, 会增加生产和管理成本,所以要规定切割模式不能超过几种,即切割模式自己设定为固定的几种。

3、按照客户需要在一根原料钢管上安排切割的某种排列组合,合理切割模式的余料应小于客户需要钢管的最小尺寸。

4、约束条件:

  • 需求约束
  • 原料约束
  • 整数约束

求解

在这里插入图片描述
为满足客户需要,按照哪些种合理模式切割,每种模式切割多少根原料钢管,最为节省?
因此要设出来,最后找其中的约束关系,利用lingo求解。

思路1——总余量最少

解:设xi是 按第i种模式切割的原料钢管根数(i=1,…,7)
在这里插入图片描述
目标函数:
在这里插入图片描述

约束条件:

  • 需求约束
    在这里插入图片描述
  • 整数约束
    xi均为整数

Lingo代码

model:
sets:
schema/1..7/:x,f;pipe/1..3/:b;link(pipe,schema):A;
endsets
data:
f=3,1,3,3,1,1,3;b=50,20,15;
A=4,3,2,1,1,0,0
0,1,0,2,1,3,0
0,0,1,0,1,1,2;
enddata
min=@sum(schema(i):(f(i)*x(i)));
@for(pipe(i):(@sum(schema(j):A(i,j)*x(j)))>=b(i));
@for(schema(i):@gin(x(i)));
end

思路2——总根数最少

解:设xi是 按第i种模式切割的原料钢管根数(i=1,…,7)

目标函数:
在这里插入图片描述
约束条件同上

题目2

增加1种需求:10根5m ;切割模式不超过3种;即现有4种需求:50根4m, 10根5m, 20根6m,15根8m;
若用枚举法确定合理切割模式,过于复杂。因此,对大规模问题, 用模型的约束条件界定合理模式。(直接设)设出每一种模式的切割方式,及按照每种模式切割的数量。但是注意,模式不要设置太多,可以自己固定模式数量的上限,否则不仅自己求解困难,在实际生产中管理也过为复杂。

求解

解:设xi是按第i 种模式切割的原料钢管根数(i=1,2,3);
r1i, r2i, r3i, r4i是第i 种切割模式下, 每根原料钢管生产4m、5m、6m和8m长的钢管的数量.

目标函数:(总根数最少)min=x1+x2+x3;

约束条件:

  • 需求约束
    在这里插入图片描述

  • 原料约束(切割模式合理)
    在这里插入图片描述

  • 缩小可行域约束(根据第一问的规律得出)
    在这里插入图片描述

  • 整数约束
    xi,rij均为整数

Lingo代码

model:
sets:
schema/1..3/:x;pipe/1..4/:b,c;link(pipe,schema):r;
endsets
data:
b=50,10,20,15;c=4,5,6,8;
enddata
min=@sum(schema(i):x(i));
@for(pipe(i):(@sum(schema(j):r(i,j)*x(j)))>=b(i));
@for(schema(j):(@sum(pipe(i):r(i,j)*c(i)))<19);
@for(schema(j):(@sum(pipe(i):r(i,j)*c(i)))>=16);
@for(schema(i):@gin(x(i)));
@for(schema(j):@for(pipe(i):@gin(r(i,j))));
x(1)>=x(2);
x(2)>=x(3);
end

易拉罐下料(二维)

在这里插入图片描述

分析

目标:易拉罐利润扣除原料余料损失后的净利润最大
注意:不能装配的罐身、上下底也是余料
约束:工作时间;原料数量;配套组装

求解

解:设决策变量如下:
xi ~ 按照第i 种模式的生产张数(i=1,2,3,4);
y1 ~ 一周生产的易拉罐个数;
y2 ~ 不配套的罐身个数;
y3 ~ 不配套的底、盖个数.
在这里插入图片描述
每只易拉罐利润0.10元,余料损失0.001元/ cm2,罐身面积PIdh=157.1 cm2;底盖面积PIdd/4=19.6 cm2

目标函数:
max=0.1y1-0.001(222.6x1+183.3x2+261.8x3+169.5y2)

约束:

  • 时间约束
    在这里插入图片描述
  • 原料约束
    在这里插入图片描述
  • 配套约束
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

总结

一维问题若模式不多,可枚举出来,则列举出所有情况,设出采用每种模式切割的个数,找到合适的约束条件,建立整数线性规划模型。
若模式枚举不过来,则构造整数非线性规划模型, 将各种模式设出来(每种模式如何切割),同时设出采用每种模式切割的数量,然后多找约束条件(如:满足需求、切割模式合理等),列出多个不等式。可用缩小可行域的方法进行化简, 但要保证最优解的存在。
二维、三维问题类似。

切割模式相关软件

CutMaster
在这里插入图片描述

CutLogic 2D

在这里插入图片描述

附三维问题:

快递包装问题

某企业为下游快递公司生产包装纸箱。该企业生产的原始瓦楞纸有四种型号,皆为正方形,其边长分别为2.5m,2.0m,1.8m, 1.5m, 三层瓦楞板成本分别为10.0,6.5,4.8,4.0元。瓦楞纸边角料可以以每平米1.4元在其企业内部回收利用。五层瓦楞板成本为对应三层板的1.3倍。
问题1. 请利用下表中的数据给出合理的假设,确定该企业1天的生产计划,使其利润最大。
问题2. 如果实际中,提供给下游快递公司的纸箱在容积误差30%之内可以以大纸箱代替小纸箱供货,那么新的最优生产计划是什么?
问题3. 哪一种快递纸箱的需求变化对生产计划最为敏感?

在这里插入图片描述

可以展开如下图后参照二维模型进行求解
在这里插入图片描述

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值