【读论文】Signed Neuron with Memory: Towards Simple, Accurate and High-Efficient ANN-SNN Conversion

在这里插入图片描述
IJCAI 2022 有记忆带符号的神经元:面向简单,精准且高效的ANN-SNN转换
代码链接:https://github.com/ppppps/ANN2SNNConversion_SNM_NeuronNorm

背景

现有的ANN-SNN转换方法忽略了同步ANN与异步SNN之间信息传输的不一致性。

创新点

  1. 分析ANN的同步与SNN的异步特性可能造成误差,并提出一种有记忆功能的带符号神经元,它的放电率等于ReLU的激活值且保留了转换后SNN的异步特性;
  2. 提出神经元参数归一化(NeuronNorm)方法显著降低SNN推理延迟;

主要内容与做法

误差分析:

对负权传输的脉冲延迟到达处理不当,导致脉冲神经元输出率较高,使ANN和转换后的SNN无法对应;
在这里插入图片描述

解决方法:Signed Neuron with Memory(SNM)

SNM的负脉冲可以使SNN同时保持异步传输和同步传输能力,同时有效解决输出速率过高的问题;而记忆机制使得它可以记住传输脉冲的和(正负可以抵消),只有当和大于0时才能向下传递负脉冲。
SNM如下更新:
请添加图片描述
请添加图片描述
m是第L层, 第j个神经元的记忆值。

实现效果如下图:
请添加图片描述
右侧t4时刻memory的值为1,可发射负脉冲;但t5时刻memory = 0,故不可发射脉冲。
(照着公式看不难理解的)

较长推理延迟的问题:

层归一化需要较高延迟是因为,ANN中的大量激活值都远小于最大激活值,对于SNN,小数值需要较长的时间传输。一个简单的解决方法是设置阈值前对最大激活值λ使用协同系数α,降低阈值可以保留更多的小数据,但无法区分较大的数据。
第L层的信息损失:
请添加图片描述
c, w, h 表示第c通道第w行第h列

解决方法:Neuron-Wise Normalization 神经元归一化

分别记录ANN中每个神经元的最大激活值,并作为对应SNN神经元的阈值,由于同一层中不同神经元的最大激活值是相对独立的,因此大大减少了信息损失。
请添加图片描述

总结

本文从神经元模型与归一化方法的角度提出了新的ANN-SNN转换方法。通过分析SNN异步传输导致的误差,提出SNM神经元模型,保证脉冲神经元输出速率与ReLU激活值对应,同时保持SNN异步传输能力;逐层归一化会严重增加SNN推理延迟,提出神经元归一化,可以显著减少信息损失,降低延迟。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值