【读论文】TCL: an ANN-to-SNN Conversion with Trainable Clipping Layers

请添加图片描述
DAC 2021

背景

通过ANN2SNN的方法得到的SNN中,存在准确性和延迟之间的一种权衡关系,在较大的数据集(如ImageNet)上可能会有较高的延迟。

主要贡献

  1. 分析了转换后SNN精度与延迟之间存在权衡关系的原因,并指出了如何缓解这种权衡关系;
  2. 提出TCL(trainable clipping layer)技术改善权衡关系,TCL的剪裁区域是被训练过的,跟着ReLU层,可以找到精度与延迟之间的最优数据归一化因子;
  3. 通过适当控制L2正则化系数,进一步提高了极低延迟约束下SNN的精度。

主要内容与方法

ANN2SNN误差分析

请添加图片描述
f是放电率,a是激活值,deta是量化解(我的理解是a_limit是转换中可映射的最大激活值)。
ANN2SNN实际上就是用量化的激活值匹配放电率,但量化误差是不可避免的。可以通过增加延迟T或者减小a_limit来减小量化误差,这也是ANN2SNN过程中存在精度和延迟之间权衡关系的原因。请添加图片描述
通过上面这个图也可以看到,ANN大部分激活值都不是特别接近最大激活值,有90.00%~99.99%都是在[0, max / 3]的范围里,但由于a_limit的选择,可能造成不同的损失:当a_limit<a_max,一部分激活值被剪裁掉了,造成了损失;当a_limit>a_max,又会造成量化误差。

可训练的剪裁层(Trainable Clipping Layer)

请添加图片描述
请添加图片描述

clipping layer的功能如(9)所示,λ是可训练参数,其梯度用(10)计算,更新规则如(11)。
其中η是学习率,α是L2正则化系数,L是ANN的loss。

实验结果

请添加图片描述
请添加图片描述
从实验结果可以看出,TCL技术对比SOTAs取得了两方面重要成就:

  1. 尽管限制了激活值的范围,TCL几乎不影响ANN的精度;
  2. 转换后的SNN具有与原ANN相当的精度,并且延迟也较为适中。

总结

本文提出了一种基于ANN-to-SNN转换的可训练剪裁层技术,即TCL,缓解了SNN精度和延迟之间的权衡关系。实验结果表明,基于TCL的SNN即使在250个时钟周期的小延迟下,也能获得几乎相当ANN的精度,很好地验证了TCL的有效性。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值