1.问题描述
一个给定序列的子序列:在该序列中删去若干元素后得到的序列。
公共子序列:给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
最长公共子序列:公共子序列中长度最长的公共子序列
最长公共子序列(LCS)问题叙述:
给定2个序列X={x1,…,xm}和Y={y1,…,yn}
要求找出X和Y的一个最长公共子序列。
输入要求:
输入共有两行,每行是一个长度不超过500的字符串,表示序列X、Y
输出要求:
输出一行,表示所求的最长公共子序列的长度,若不存在最长公共子序列,输出0
(1)最长公共子序列的结构——最优子结构性质:
设序列X={x1,…,xm}和Y={y1,…,yn}的一个最长公共子序列为Z={z1,…,zk}。则下述结论成立:
①若xm=yn,则zk=xm=yn 且Z(k-1) = {z1,…,zk-1}是X(m-1)和Y(n-1)的最长公共子序列。
②
若xm=yn 且 zk=xm,则Z是X(m-1)和Y的最长公共子序列。
若xm=yn 且 zk=yn,则Z是X和Y(n-1)的最长公共子序列。