动态规划——最长公共子序列问题

这篇博客探讨了最长公共子序列问题,解释了如何通过动态规划来找到两个序列的最长公共子序列。它详细介绍了最优子结构和重叠子问题的概念,并给出了状态表示和递归方程,为解决此类问题提供了清晰的思路。
摘要由CSDN通过智能技术生成

1.问题描述
一个给定序列的子序列:在该序列中删去若干元素后得到的序列。
公共子序列:给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
最长公共子序列:公共子序列中长度最长的公共子序列
最长公共子序列(LCS)问题叙述:
给定2个序列X={x1,…,xm}和Y={y1,…,yn}
要求找出X和Y的一个最长公共子序列。

输入要求:
输入共有两行,每行是一个长度不超过500的字符串,表示序列X、Y
输出要求:
输出一行,表示所求的最长公共子序列的长度,若不存在最长公共子序列,输出0

(1)最长公共子序列的结构——最优子结构性质:
设序列X={x1,…,xm}和Y={y1,…,yn}的一个最长公共子序列为Z={z1,…,zk}。则下述结论成立:
①若xm=yn,则zk=xm=yn 且Z(k-1) = {z1,…,zk-1}是X(m-1)和Y(n-1)的最长公共子序列。

若xm=yn 且 zk=xm,则Z是X(m-1)和Y的最长公共子序列。
若xm=yn 且 zk=yn,则Z是X和Y(n-1)的最长公共子序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>