PAT-A 1004 Counting Leaves (30 分)

家庭关系可以用家谱树来表示,给定一个家谱树,你的任务是找出其中没有孩子的成员。

输入格式
第一行包含一个整数 N 表示树中结点总数以及一个整数 M 表示非叶子结点数。

接下来 M 行,每行的格式为:

ID K ID[1] ID[2] … ID[K]
ID 是一个两位数字,表示一个非叶子结点编号,K 是一个整数,表示它的子结点数,接下来的 K 个 ID[i] 也是两位数字,表示一个子结点的编号。

为了简单起见,我们将根结点固定设为 01。

所有结点的编号即为 01,02,03,…,31,32,33,…,N。

输出格式
输出从根结点开始,自上到下,树的每一层级分别包含多少个叶子节点。

输出占一行,整数之间用空格隔开。

数据范围
0<N<100
输入样例:
2 1
01 1 02
输出样例:
0 1
样例解释
该样例表示一棵只有 2 个结点的树,其中 01 结点是根,而 02 结点是其唯一的子节点。

因此,在根这一层级上,存在 0 个叶结点;在下一个级别上,有 1 个叶结点。

所以,我们应该在一行中输出0 1。

直接邻接表模拟即可

#include <bits/stdc++.h>

using namespace std;
int n,m;
vector<int> v[110];
int ans[110];
int maxx=0;
void dfs(int cur_level,int id)
{
    maxx = max(cur_level,maxx);
    if(v[id].size()==0)
    {
        ans[cur_level]++;
        return ;
    }
    for(int each:v[id])
    {
        dfs(cur_level+1,each);
    }
}
int main()
{
    cin >> n>>m;
    for(int i=1;i<=m;i++)
    {
        int pre,k;
        cin >> pre>>k;
        while(k--)
        {
            int shu;
            cin >>shu;
            v[pre].push_back(shu);
        }
    }
    dfs(1,1);
    for(int i=1;i<=maxx;i++)
    {
        cout <<ans[i];
        if(i!=maxx)
        cout <<" ";
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值