**Floyd求最短路 O(N³)**
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定 k 个询问,每个询问包含两个整数 x 和 y,表示查询从点 x 到点 y 的最短距离,
如果路径不存在,则输出 impossible。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
接下来 k 行,每行包含两个整数 x,y,表示询问点 x 到点 y 的最短距离。
输出格式
共 k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible。
数据范围
1≤n≤200,
1≤k≤n2
1≤m≤20000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
#include <bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int dis[250][250];
int a[250][250];
int n,m,k;
void floyd()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
}
int main()
{
cin >> n >>m >>k;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
{
dis[i][j]=0;
}
else
dis[i][j]=inf;
}
}
for(int i=1;i<=m;i++)
{
int s,e,w;
cin >>s >>e >>w;
dis[s][e]=min(dis[s][e],w);
}
floyd();
while(k--)
{
int s,e;
cin >>s >>e ;
if(dis[s][e]>inf/2)
cout <<"impossible"<<endl;
else
cout <<dis[s][e]<<endl;
}
return 0;
}
**Dijkstra求最短路(朴素版O(N²) 、堆优化版 O(M LogN)**
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
#include <bits/stdc++.h>
using namespace std;
int n,m;
const int N = 100010;
int head[N],dis[N];
int vis[N];
struct node
{
int to,w;
int ne;
}a[N];
int cnt;
void add(int x,int y,int z)
{
cnt++;
a[cnt].to=y;
a[cnt].w=z;
a[cnt].ne = head[x];
head[x]=cnt;
}
void dijkstra()
{
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int>> > q;
q.push({0,1});
while(!q.empty())
{
int x = q.top().second;
q.pop();
if(vis[x])
continue;
vis[x]=1;
for(int i = head[x];i!=-1;i=a[i].ne)
{
int xx = a[i].to;
if(dis[xx]>a[i].w+dis[x])
{
dis[xx]=a[i].w+dis[x];
q.push({dis[xx],xx});
}
}
}
if(dis[n]==0x3f3f3f3f)
cout <<"-1";
else
cout <<dis[n];
}
int main()
{
cin >> n >>m;
memset(dis,0x3f3f3f3f,sizeof(dis));
memset(head,-1,sizeof(head));
dis[1]=0;
for(int i=1;i<=m;i++)
{
int x,y,z;
cin >> x >>y >>z;
add(x,y,z);
}
dijkstra();
return 0;
}
**bellman-ford 应用 ——有边数限制的最短路 (O (MN) )**
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数 n,m,k。
接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。
数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过 10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
#include <bits/stdc++.h>
using namespace std;
struct node
{
int u,v,w;
}a[10010];
int dis[10010];
int back[10010];
int n,m,k;
void bellman_ford()
{
memset(dis,0x3f,sizeof(dis));
dis[1]=0;
for(int i=0;i<k;i++)
{
memcpy(back,dis,sizeof(dis));
for(int j=0;j<m;j++)
{
int x=a[j].u,y=a[j].v,z=a[j].w;
dis[y] = min(dis[y],back[x]+z);
}
}
if(dis[n]>0x3f3f3f3f/2)
cout <<"impossible";
else
cout <<dis[n];
}
int main()
{
cin >> n >>m>> k;
for(int i=0;i<m;i++)
{
int x,y,z;
cin >>x>>y>>z;
a[i]={x,y,z};
}
bellman_ford();
return 0;
}
spfa求最短路(一般O(M)最坏O(NM))
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
#include <bits/stdc++.h>
using namespace std;
int n,m;
int cnt;
int dis[100010];
int head[100010];
bool st[100010];
struct node
{
int ne,to,w;
}a[100010];
bool s;
void add(int x,int y,int z)
{
cnt++;
a[cnt].to=y;
a[cnt].w=z;
a[cnt].ne=head[x];
head[x]=cnt;
}
void spfa()
{
queue<int> q;
q.push(1);
while(!q.empty())
{
int now = q.front();
q.pop();
st[now]=false;
for(int i=head[now];i!=-1;i=a[i].ne)
{
int xx=a[i].to,yy=a[i].w;
if(dis[xx]>dis[now]+yy)
{
dis[xx]=dis[now]+yy;
if(!st[xx])
{
q.push(xx);
st[xx]=true;
}
}
}
}
if(dis[n]>0x3f3f3f3f/2)
cout <<"impossible";
else
cout <<dis[n];
}
int main()
{
cin >> n >>m;
memset(head,-1,sizeof(head));
memset(dis,0x3f,sizeof(dis));
dis[1]=0;
for(int i=1;i<=m;i++)
{
int x,y,z;
cin >>x>> y >>z;
add(x,y,z);
}
spfa();
return 0;
}
spfa判断负环
给定一个 n 个点 m 条边的有向图,图中可能 存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
#include <bits/stdc++.h>
using namespace std;
bool st[2100],num[2100];
int dis[2100],head[21000];
struct node
{
int ne,w,to;
}a[21000];
int cnt;
void add(int x,int y,int z)
{
cnt++;
a[cnt].to=y;
a[cnt].w=z;
a[cnt].ne=head[x];
head[x]=cnt;
}
int n,m;
void spfa()
{
queue<int> q;
for(int i=1;i<=n;i++)
{
q.push(i);
st[i]=true;
}
while(!q.empty())
{
int now = q.front();
q.pop();
st[now]=false;
for(int i=head[now];i!=-1;i=a[i].ne)
{
int xx=a[i].to,ww=a[i].w;
if(dis[xx]>dis[now]+ww)
{
dis[xx]=dis[now]+ww;
num[xx]=num[now]+1;
if(num[xx]>=n)
{
cout <<"Yes";
exit(0);
}
if(!st[xx])
{
st[xx]=true;
q.push(xx);
}
}
}
}
cout <<"No";
}
int main()
{
cin >> n >>m;
memset(head,-1,sizeof(head));
for(int i=1;i<=m;i++)
{
int x,y,z;
cin >> x >> y>>z;
add(x,y,z);
}
memset(dis,0x3f,sizeof(dis));
dis[1]=0;
spfa();
return 0;
}