给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
例如:
输入:
5 2
1
2
3
4
5
程序应该输出:
6
思路:
要计算任意两个区间的和,很容易想到的是前缀和。知道前缀和以后要求区间[l,r]的和可以很容易的通过sum[r]-sum[l-1]的方式来求,但是求完前缀和以后既然要是任意区间,那么肯定不可以枚举两个端点,这样复杂度就变成了O(n2)
( sum[r] − sum[l−1] ) % k = 0;
即 sum[r] % k − sum[l−1] % k=0
等价于
sum[r] % k == sum[l−1] % k
所以我们只需要在求前缀和的时候直接对k求模,最后遍历,如果i和j取模后的结果相等,就说明区间i到j可以被k整除,它是一个k倍区间,或者sum[i]%k==0,说明从0到i的前缀和就是一个k倍区间。
对于这个值 n∗(n−1)/2就是有多少个区间。
要注意给0这个端点的值+1,因为计算前缀和的时候,第一个0没有被计算,是存在区间长度为1的数据能整除k .
#include <stdio.h>
const int maxn=1e5+10;
long long sum[maxn],a[maxn],cnt[maxn];
int main()
{
long long n,k,i,j;
scanf("%lld %lld",&n,&k);
for (i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
sum[i]=(sum[i-1]+a[i])%k;
}
cnt[0]=1;
for (i=1; i<=n; i++)
cnt[sum[i]]++;
//计数,看看有多少个前缀和相同的区间,比如sum[i]==sum[j]-->sum[j]-sum[i]==0,
//说明i到j的区间就是一个k倍区间。
//那么一共有多少k倍区间?比如sum[2],sum[6],sum[9],sum[11]的值是一样的,
//我们可以知道区间2->6是k倍区间,同样2->9,2->11,6->9,6->11,9->11都是k倍区间,共计6个
//发现规律没?怎么算出是6个区间的? 总共四个数,4*(4-1)/2=6
//就是这个公式:c[i]*(c[i-1])/2;
long long ans=0;
for (i=0; i<k; i++)
ans+=cnt[i]*(cnt[i]-1)/2;
printf("%lld\n",ans);
return 0;
}