poj 1061 青蛙的约会(拓展欧几里得学习)

题意

青蛙A每天走 m m m,青蛙B每天走 n n n,它们在一个环形的轨道上,轨道长度为 l l l,青蛙A的初始位置为 a a a,青蛙B的初始位置为 b b b.
求:青蛙走多少天才可以相遇?

题解

设青蛙走 x x x天可以相遇,则可以列出方程
m x + a − ( n x + b ) = k l mx+a-(nx+b)=kl mx+a(nx+b)=kl
整理可得:
( n − m ) x + k l = a − b (n-m)x+kl=a-b (nm)x+kl=ab可以看出这是一个 a x + b y = c ax+by=c ax+by=c的式子,可以用拓展欧几里得,求出一个 ( n − m ) x + k l = g c d ( n − m , l ) (n-m)x+kl=gcd(n-m,l) (nm)x+kl=gcd(nm,l)的解 x , y x,y xy
由于不确定 n , m n,m n,m的大小,需要分类讨论一下
( n − m ) x + k l = a − b ( n > m ) (n-m)x+kl=a-b (n>m) (nm)x+kl=ab(n>m)
( m − n ) x + ( − k ) l = b − a ( n < m ) (m-n)x+(-k)l=b-a (n<m) (mn)x+(k)l=ba(n<m)
因为我们不需要求 k k k的大小,只需要求 x,所以我们只处理系数变换。

最后我们需要求出来的应该是一个最小正整数 x m i n x_{min} xmin

经过拓展欧几里得,我们可以求出:
( n − m ) x + k l = g c d ( n − m , l ) (n-m)x+kl=gcd(n-m,l) (nm)x+kl=gcd(nm,l)的一个特解 ( x , y ) (x,y) (x,y)
x = x a − b g c d ( n − m , l ) x=x\frac{a-b}{gcd(n-m,l)} x=xgcd(nm,l)ab
得到 ( n − m ) x + k l = a − b (n-m)x+kl=a-b (nm)x+kl=ab的一个特解
这个方程式的通解为 X = x m i n + k b g c d ( n − m , l ) ( k ∈ Z ) X=x_{min}+k\frac{b}{gcd(n-m,l)}(k\in Z) X=xmin+kgcd(nm,l)b(kZ)
那么 x m i n = X % ( b g c d ( n − m , l ) ) x_{min}=X\%(\frac{b}{gcd(n-m,l)}) xmin=X%(gcd(nm,l)b);
因为有求出来 x < 0 x<0 x<0的情况
x m i n = [ x % ( b g c d ( n − m , l ) ) + b g c d ( n − m , l ) ] % ( b g c d ( n − m , l ) ) x_{min}=[x\%(\frac{b}{gcd(n-m,l)})+\frac{b}{gcd(n-m,l)}]\%(\frac{b}{gcd(n-m,l)}) xmin=[x%(gcd(nm,l)b)+gcd(nm,l)b]%(gcd(nm,l)b)

代码

#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
ll m,n,a,b,l;
ll gcd;
void ex_gcd(ll a,ll b,ll &x,ll &y){
	if(b){
	    ex_gcd(b,a%b,x,y);
	    ll t=x;
	    x=y;
	    y=t-(a/b)*y;
	}
	else{
	    x=1,y=0;
	    gcd=a;
	}
	return;
}
int main()
{
	cin>>a>>b>>m>>n>>l;
	ll x=0,y=0;
    	ll c=a-b;
   	 if(n-m>0)
	     ex_gcd(n-m,l,x,y);
   	 else{
   	     c=-c;
   	     ex_gcd(m-n,l,x,y);
   	 }
   	 if(c%gcd!=0){
             cout<<"Impossible"<<endl;
             return 0;
         }
         ll t=l/gcd;
   	 x*=(c/gcd);
   	 x=(x%t+t)%t;
   	 cout<<x<<endl;
   	 
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值