AK F.*ing leetcode 流浪计划之费马小定理与组合数取模

54 篇文章 7 订阅
38 篇文章 0 订阅

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

费马小定理与证明

参考 https://zhuanlan.zhihu.com/p/594859227

费马小定理:如果p是一个质数,而正整数a不是p的倍数,那么a(p-1)≡1(mod p)。

证明:

引理1 S={1a, 2a, 3a, …, (p-1)a},S里所有数都不是p的倍数

由于 1到p-1都小于p, a也不能被p整除,说明a, 1到p-1 这些数都没有因子p。

由此引理1得证明。

引理2 S中所有元素对p取模不为0,且正好为集合 N = {1,2,3,…, p-1}

由引理1可知,对于任意小于p的两个不相同整数, i, j, ia%p != ja%p !=0。

假设 ia%p = ja%p,则 i%p * a%p = j%p * a%p, 得出i=j,与条件矛盾。

所以,对于S%p所有数字不相同,总个数为p-1个,由鸽巢原理可知,引理2正确。

根据引理2,可得到 ∏ S % p = ∏ N % p \displaystyle \prod_S \%p = \prod_N \%p S%p=N%p

两边整理得到 a p − 1 ( p − 1 ) ! % p = ( p − 1 ) ! % p a^{p-1}(p-1)!\%p=(p-1)!\%p ap1(p1)!%p=(p1)!%p

由于gcd(p, (p-1)!)=1, 得到 a(p-1)%p=1。

逆元

定义

已知整数a,p , a与p互质,如果存在一个数c<p使得 a*c%p=1, 则称c为a在模p下的逆元,记c=a-1 %p;
通俗理解就是求(1/a)%p。

用费马小定理求逆元

a(p-1)≡1(mod p)

可知 a*a(p-2)%p=1

从定义可知 a在模p下的逆元为 a(p-2)%p, 一般p是比较大的质数,可以使用快速幂求解。

typedef long long lld;
 
lld MOD = 998244353;
 
const int N = 1e6 + 10;
 // a的逆元为 fastmi(a, p-2)
lld fastmi(lld a, lld n) {
	lld ans = 1;
 
	while (n) {
		if (n & 1)ans = ans*a%MOD;
		
		a *= a;
		a %= MOD;
		n >>= 1;
	}
 
	return ans;
}

组合数取模

已经知p是一个比较大的质数(超过10的7次),求组合数C(n, m) , 0<=m<=n。

打表法

当n<=1000时,可以使用扬辉三角打表法。
用一个下三角矩阵存储组合数结果。
利用公式C[i][j] =( C[i - 1][j-1] + C[i - 1][j])%p,求解;
在这里插入图片描述


lld C[1010][1010];
 
void initC() {
	C[0][0] = 1;
	C[1][0] = C[1][1] = 1;
 
	for (int i = 2; i < 1010; i++) {
		C[i][0] = C[i][i] = 1;
		for (int j = 1; j < i; ++j) C[i][j] =( C[i - 1][j-1] + C[i - 1][j])%MOD;
	}
}

逆元法

C n m = A n m m ! = n ! m ! ( n − m ) ! C_n^m=\frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!} Cnm=m!Anm=m!(nm)!n!

从上式可以看出当m不是很大时,m!的逆元是可以在O(n)log§时间内求出来的。

当n不大时也可以直接迭代得到n!%p。

如果n-m不大也可以直接求得 A n m A_n^m%p Anm


lld inv[N];
// 计算n! 的逆元, inv[n]=(1/n!)%p = (n!)^(p-2)%p
void initInv() {
	lld sum = 1;
	inv[0] = 1;
	for (lld i = 1; i < N; ++i) {
		sum *= i;
		sum %= MOD;
		inv[i] = fastmi(sum, MOD - 2);
	}
}

// 计算C(n, m) = n!/(n-m)!%p * inv[m]%p
lld C(lld n, lld m) {
	lld sum = 1;
	for (int i = n; i > (n - m); --i) sum = sum * i % MOD;
	return sum * inv[m] % MOD;
}

题目一

https://codeforces.com/contest/1967/problem/C

题目大意

题目基础相关知识:树状数组

定义lowbit(x) 是由x二进制最低位的1和后面的0组成的数字,例如,lowbit(12)=4, lowbit(8)=8.
取K值
arr是一个长度为n数组。

假如一个长度为n的数组sum 满足 s u m i = { ∑ j = i − l o w b i t ( i ) + 1 i a r r [ j ] } m o d   998244353 sum_i=\left \{\displaystyle \sum_{j=i-lowbit(i)+1}^{i}arr[j]\right \}mod\ 998244353 sumi= j=ilowbit(i)+1iarr[j] mod 998244353,则称sum为arr的二叉索引树。定义sum=f(arr)。

下图可以解释上述定义,红线为累加给上级关系。

树状数组示意图

给定一个数组a, 整数k,

f k ( a ) = { f ( a )     k = 1 f ( f k − 1 ( a ) )     k > 1 f^k(a)=\left \{\begin{array}{l}f(a) \ \ \ k=1\\f(f^{k-1}(a))\ \ \ k>1\end{array} \right . fk(a)={f(a)   k=1f(fk1(a))   k>1

问题:给定结果sum,k 求最初始的数组arr。
n 为arr长度, 1≤n≤2⋅105,1≤k≤109

问题解析

既然是累加关系,那么可以尝试找到累加系数关系。之后就可以使用高斯消元法求解每个未知数。

设c[i]为sumi的累加系数。

s u m i = { ∑ j = i − l o w b i t ( i ) + 1 i a r r [ j ] ∗ c [ i ] [ j ] } m o d   998244353 sum_i=\left \{\displaystyle \sum_{j=i-lowbit(i)+1}^{i}arr[j]*c[i][j]\right \}mod\ 998244353 sumi= j=ilowbit(i)+1iarr[j]c[i][j] mod 998244353

假设已经知道系数,我们可以从低到高枚举i, 然后把用sumi把相关联的上级减掉,剩下的sum数组就是答案。

下面来寻找系数与k的关系

手动模拟一下:

假设现在数组长度为8。
当k=1时,
系数c如下
在这里插入图片描述
横坐标为arr[i], 纵坐标为sum[i]。

k=2, 在上面基础上再模拟一遍
在这里插入图片描述
k=3,在上面基础上再模拟一遍
在这里插入图片描述

上面我们只看1,2,4,8行(从树上看是连续上级关系),

从上表观察发现每次K增加1,相应系数就是把k-1对应的系数全部加起来。
例如k=3时,c[8]1 = (c[8][1] + c[4][1]+c[2][1]+c[1][1])(k=2)

经过简单的分析可以得到以下一个表。

在这里插入图片描述

将上表命名为mat, 横坐标为k-1, 纵坐标为当前数字与目标数字的层数相。
可以看出下行就是上一行的前缀和。

至此,我们已经找到了k与系数的关系,但是k太大了,直接计算或者打表都不可能。

对上表进行旋转,可以得到扬辉三角,

在这里插入图片描述
也就是说mat[i][j] 与组合数C(n, m)存在一个关系。
通过线性变换可以得到 mat[i][j] = C(i+j, i)

实现细节

根据上面的推导

  • sum[1] = arr[1];
  • sum[2] = c[1][1]*arr[1] + arr[2];
  • sum[3] = arr[3];
  • sum[4] = c[4][1]*arr[1] + c[4][2]*arr[2] + c[4][3]*arr[3] + arr[4];
  • sum[5] = arr[5];
  • sum[6] = c[6][5]*arr[5] + arr[6];
  • sum[7] = arr[7];
  • sum[8] = c[8][1]*arr[1] + c[8][2]*arr[2] + c[8][3]*arr[3] +c[8][4]*arr[4] + c[8][5]*arr[5] + c[8][6]*arr[6] + c[8][7]*arr[7] + arr[8];

d = dep[i]-dep[j], 在二叉树上的深度
c [ i ] [ j ] = m a t [ d ] [ k − 1 ] = C ( d + k − 1 , d ) = i n v [ d ] ∗ A d + k − 1 d c[i][j] = mat[d][k-1]=C(d+k-1, d) = inv[d]*A_{d+k-1}^d c[i][j]=mat[d][k1]=C(d+k1,d)=inv[d]Ad+k1d

可从i=1开始 用c[][]*sum[i] 去减掉所有上级树上加成项。
相当于d每次会加1,
m a t [ d + 1 ] [ k − 1 ] = C ( d + 1 + k − 1 , d + 1 ) = i n v [ d + 1 ] ∗ A d + 1 + k − 1 d + 1 mat[d+1][k-1]=C(d+1+k-1, d+1) = inv[d+1]*A_{d+1+k-1}^{d+1} mat[d+1][k1]=C(d+1+k1,d+1)=inv[d+1]Ad+1+k1d+1
inv已经求好了。

A d + 1 + k − 1 d + 1 = A d + k − 1 d ∗ ( d + 1 + k − 1 ) A_{d+1+k-1}^{d+1}=A_{d+k-1}^d * (d+1+k-1) Ad+1+k1d+1=Ad+k1d(d+1+k1)
根据上述递推式,可以一边递推一边减掉加成项。
这样可以平均O(1)求出系数c.

代码



#include <iostream>
#include <stdio.h>
#include <queue>
#include <string.h>
#include <stack>
#include <vector>
#include <map>
#include <algorithm>
#include <cmath>

using namespace std;

typedef long long lld;

lld MOD = 998244353;

const int N = 1e6 + 10;

lld fastmi(lld a, lld n) {
	lld ans = 1;

	while (n) {
		if (n & 1)ans = ans * a % MOD;

		a *= a;
		a %= MOD;
		n >>= 1;
	}

	return ans;
}

lld inv[N];

void initInv() {
	lld sum = 1;
	inv[0] = 1;
	for (lld i = 1; i < N; ++i) {
		sum *= i;
		sum %= MOD;
		inv[i] = fastmi(sum, MOD - 2);
		// if (i < 10)cout <<sum<<", "<< inv[i] << ", " << (inv[i]*sum%MOD) << endl;
	}
}

int lowbit(int x) {
	return x & (-x);
}

lld arr[N];

lld C[1010][1010];

void initC() {
	C[0][0] = 1;
	C[1][0] = C[1][1] = 1;

	for (int i = 2; i < 1010; i++) {
		C[i][0] = C[i][i] = 1;
		for (int j = 1; j < i; ++j) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % MOD;
	}
}



void solve() {
	initInv();
	initC();
	int t;
	cin >> t;
	while (t--) {
		lld n, k;
		cin >> n >> k;
		for (int i = 1; i <= n; ++i)cin >> arr[i];

		for (int i = 1; i <= n; ++i) {
			lld isum = 1;
			for (int j = i + lowbit(i), d = 1; j <= n; j += lowbit(j), d++) {
				isum = isum * ((k - 1 + d) % MOD) % MOD;
				//cout << j<<", "<< d<<", "<< isum * inv[d] % MOD<<endl;
				arr[j] -= isum * arr[i] % MOD * inv[d] % MOD;
				arr[j] %= MOD;
				//cout << "mat" << k - 1 << ", " << d << endl;
				//cout << "C" << k - 1 +d<< ", " << d<< "=" << isum * inv[d] % MOD<< endl;
				/*arr[j] -= C[k-1+d][d] * arr[i] % MOD;
				arr[j] %= MOD;*/

				//cout << "C" << k - 1 + d << ", " << d << "=" << C[k - 1 + d][d] << endl;
			}
		}

		for (int i = 1; i <= n; ++i) {
			if (arr[i] < 0)arr[i] += MOD;
			cout << arr[i] << " ";
		}

		cout << endl;
	}
}


int main() {
	solve();
	return 0;
}
/*
2
8 100
1 2 1 4 1 2 1 8
6 7
1 4 3 17 5 16

2
8 1
1 2 1 4 1 2 1 8
6 2
1 4 3 17 5 16

 */


lld CC(lld n, lld m) {
	lld sum = 1;
	for (int i = n; i > (n - m); --i) sum = sum * i % MOD;
	return sum * inv[m] % MOD;
}


本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

  • 17
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值