cuda11.6.2 + cudnn8.8.0 + tensorRT8.5.3 + pytorch1.13安装记录(亲测有效)

1. cuda11.6.2 安装

1.1 cuda11.6.2 下载

由于本人下载时,cuda以及更新为12.0版本,需要进入以前的版本下载界面。
进入英伟达官网:

https://developer.nvidia.com/

paltforms下找到cuda Toolkit 点击进入

在这里插入图片描述

进入cuda页面之后点击Download New

在这里插入图片描述
最后点击Archive of Previous CUDA Releases 即可进入以前版本的下载页面
在这里插入图片描述
找点cuda11.6.2版本,点击进入
在这里插入图片描述
最后选择自己电脑配置之后即可开始下载

在这里插入图片描述

1.2 cuda11.6.2 安装

找到第一步下载的cuda 11.6.2 安装包,双击

在这里插入图片描述
等待提取完成

在这里插入图片描述

下面进入安装界面,等待兼容性自检完成后点击同意并继续

在这里插入图片描述

选择自定义安装,点击下一步

在这里插入图片描述

全选,点击下一步

在这里插入图片描述
选择默认安装位置,点击下一步
在这里插入图片描述
等待安装完成
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3 cuda11.6.2 安装测试

在cmd中检查cuda是否安装成功:nvcc -V
在这里插入图片描述

2. cudnn8.8.0 安装

2.1 cudnn8.8.0 下载

cudnn 下载需要登录英伟达账号,没有账号花几分钟注册一个即可
在主页下找到cudnn,点击进入
在这里插入图片描述
进入cudnn 也页面后点击Download cuDNN
在这里插入图片描述
之后安装下图操作即可
在这里插入图片描述

2.2 cudnn8.8.0 安装

右键解压
在这里插入图片描述
将解压后的三个文件添加到cuda的安装路径下

默认安装则在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

在这里插入图片描述
在这里插入图片描述

2.3 cudnn8.8.0 安装测试

打开终端,进入cuda 安装路径下的extras\demo_suite文件夹,运行deviceQuery.exe

在这里插入图片描述
如果安装没有问题,则会出现 PASS

之后在运行 bandwidthTest.exe

在这里插入图片描述
PASS,恭喜你安装完成,安装完成

3 tensorRT8.5.3安装

3.1 tensorRT8.5.3下载

在主页找到TensorRT 点击进入
在这里插入图片描述
进入TensorRT 页面后点击Download now
在这里插入图片描述
点击TensorRT 8
在这里插入图片描述
安装下面步骤依次点击即可下载

在这里插入图片描述

3.2 tensorRT8.5.3安装

下载得到 zip 压缩包,解压。
TensorRT安装
任意顺序完成以下几步:
复制TensorRT-8.5.3.1\bin中内容到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
复制TensorRT的include文件夹到CUDA的include文件夹
复制TensorRT-8.5.3.1\lib文件夹中的lib文件到CUDA的lib\x64文件夹,dll文件到CUDA的bin文件夹

3.3 python tensorRT8.5.3安装测试

在cmd运行解压文件bin文件夹下trtexe.exe
在这里插入图片描述
出现如下,安装成功
在这里插入图片描述

3.4 python tensorRT8.5.3安装

使用pip install xxx.whl安装TensorRT-8.5.3.1文件夹中的,下述4个文件都需要安装
在这里插入图片描述
如下图所示:
在这里插入图片描述
使用 python 检查是否安装成功
在这里插入图片描述

3.5 vs 配置 tensorRT8.5.3

将以下路径加入当环境变量中:

~\TensorRT-8.5.3.1\lib ~ 表示你的存放路径,记得替换

vs环境设置

包含目录

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\include
D:\Program Files\TensorRT-8.5.3.1\include

库目录

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib\x64
D:\Program Files\TensorRT-8.5.3.1\lib

附加依赖项

nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
cublas.lib
cublasLt.lib
cuda.lib
cudadevrt.lib
cudart.lib
cudart_static.lib
cudnn.lib
cudnn64_8.lib
cudnn_adv_infer.lib
cudnn_adv_infer64_8.lib
cudnn_adv_train.lib
cudnn_adv_train64_8.lib
cudnn_cnn_infer.lib
cudnn_cnn_infer64_8.lib
cudnn_cnn_train.lib
cudnn_cnn_train64_8.lib
cudnn_ops_infer.lib
cudnn_ops_infer64_8.lib
cudnn_ops_train.lib
cudnn_ops_train64_8.lib
cufft.lib
cufftw.lib
curand.lib
cusolver.lib
cusolverMg.lib
cusparse.lib
nppc.lib
nppial.lib
nppicc.lib
nppidei.lib
nppif.lib
nppig.lib
nppim.lib
nppist.lib
nppisu.lib
nppitc.lib
npps.lib
nvblas.lib
nvjpeg.lib
nvml.lib
nvrtc.lib
OpenCL.lib

4 pytorch1.13 安装

4.1 pytorch1.13 安装

进入pytorch 官网,点击install
在这里插入图片描述
选择如下,在自己的python 环境使用pip命令进行安装
在这里插入图片描述

4.1 pytorch1.13 安装测试

打开终端,切换到pytorch安装环境下,检测程序如下:

import torch
print(torch.__version__)
print(torch.cuda.is_available())

在这里插入图片描述

TensorRT 是 NVIDIA 开发的一款深度学习优化框架,用于加速机器学习模型推理的速度并降低资源消耗。它基于 C/C++ 编程语言,并提供 Python 接口。为了安装 TensorRT,你需要按照以下步骤操作: ### 第一步:准备环境 1. **安装 CUDAcuDNN**: - 访问 [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) 网站下载适合你的系统的 CUDA 版本。 - 安装完成后,在系统环境变量中添加 CUDA安装路径。 2. **获取 cuDNN**: - CUDA 安装过程中会自动下载并安装 cuDNN,确保选择与 CUDA 版本兼容的版本。 ### 第二步:配置环境 1. **设置环境变量**: - 设置 `PATH` 变量指向 CUDA 安装目录下的 bin 文件夹。 - 设置 `LD_LIBRARY_PATH` 变量指向包含库文件的目录。 2. **验证安装**: - 打开终端或命令提示符,输入 `nvcc -V` 来检查是否能成功识别 CUDA。 - 使用 `cudnnSearch()` 或其他 cuDNN API 函数来验证 cuDNN 是否正常工作。 ### 第三步:安装 TensorRT #### 通过源码安装 1. **下载 TensorRT 源码**: - 从 NVIDIA 的 GitHub 页面下载最新版本的源码仓库,地址通常位于 `https://github.com/NVIDIA/TensorRT/tree/master`. 2. **构建和安装**: - 解压下载的源码包到适当的目录。 - 进入解压后的目录。 - 配置构建脚本(如 `configure`),指定 CUDAcuDNN安装路径。 - 运行 `make` 命令构建 TensorRT。 - 根据需要运行 `sudo make install` 来安装 TensorRT 到系统。 #### 通过 pip 安装(推荐) 如果你希望直接使用 Python 脚本进行安装,可以考虑使用 `pip` 工具来简化过程。首先,确保已安装 `pip` 并更新到最新版本: ```bash pip install --upgrade pip ``` 然后,通过 `pip` 直接安装 TensorRT: ```bash pip install nvidia-tensorrt ``` 注意,这种方式可能无法直接访问最新的预编译轮次或特定于系统版本的版本。对于更精确控制的部署,建议还是通过上述的源码安装方式。 ### 第四步:验证安装 完成安装后,可以在 Python 中导入 TensorRT 库并尝试一些基础功能以确认安装成功: ```python import tensorrt as trt # 创建 TensorRT 实例化上下文 context = trt.get_engine() # 使用上下文进行推理或其他相关操作... ``` 如果一切顺利,你应该能够看到导入 TensorRT 成功并且能够使用其功能。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值