cuda11.6.2 + cudnn8.8.0 + tensorRT8.5.3 + pytorch1.13 安装记录
1. cuda11.6.2 安装
1.1 cuda11.6.2 下载
由于本人下载时,cuda以及更新为12.0版本,需要进入以前的版本下载界面。
进入英伟达官网:
在paltforms下找到cuda Toolkit 点击进入
进入cuda页面之后点击Download New
最后点击Archive of Previous CUDA Releases 即可进入以前版本的下载页面
找点cuda11.6.2版本,点击进入
最后选择自己电脑配置之后即可开始下载
1.2 cuda11.6.2 安装
找到第一步下载的cuda 11.6.2 安装包,双击
等待提取完成
下面进入安装界面,等待兼容性自检完成后点击同意并继续
选择自定义安装,点击下一步
全选,点击下一步
选择默认安装位置,点击下一步
等待安装完成
1.3 cuda11.6.2 安装测试
在cmd中检查cuda是否安装成功:nvcc -V
2. cudnn8.8.0 安装
2.1 cudnn8.8.0 下载
cudnn 下载需要登录英伟达账号,没有账号花几分钟注册一个即可
在主页下找到cudnn,点击进入
进入cudnn 也页面后点击Download cuDNN
之后安装下图操作即可
2.2 cudnn8.8.0 安装
右键解压
将解压后的三个文件添加到cuda的安装路径下
默认安装则在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
2.3 cudnn8.8.0 安装测试
打开终端,进入cuda 安装路径下的extras\demo_suite文件夹,运行deviceQuery.exe
如果安装没有问题,则会出现 PASS
之后在运行 bandwidthTest.exe
PASS,恭喜你安装完成,安装完成
3 tensorRT8.5.3安装
3.1 tensorRT8.5.3下载
在主页找到TensorRT 点击进入
进入TensorRT 页面后点击Download now
点击TensorRT 8
安装下面步骤依次点击即可下载
3.2 tensorRT8.5.3安装
下载得到 zip 压缩包,解压。
TensorRT安装
任意顺序完成以下几步:
复制TensorRT-8.5.3.1\bin中内容到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin
复制TensorRT的include文件夹到CUDA的include文件夹
复制TensorRT-8.5.3.1\lib文件夹中的lib文件到CUDA的lib\x64文件夹,dll文件到CUDA的bin文件夹
3.3 python tensorRT8.5.3安装测试
在cmd运行解压文件bin文件夹下trtexe.exe
出现如下,安装成功
3.4 python tensorRT8.5.3安装
使用pip install xxx.whl安装TensorRT-8.5.3.1文件夹中的,下述4个文件都需要安装
如下图所示:
使用 python 检查是否安装成功
3.5 vs 配置 tensorRT8.5.3
将以下路径加入当环境变量中:
~\TensorRT-8.5.3.1\lib ~ 表示你的存放路径,记得替换
vs环境设置
包含目录
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\include
D:\Program Files\TensorRT-8.5.3.1\include
库目录
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\lib\x64
D:\Program Files\TensorRT-8.5.3.1\lib
附加依赖项
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
cublas.lib
cublasLt.lib
cuda.lib
cudadevrt.lib
cudart.lib
cudart_static.lib
cudnn.lib
cudnn64_8.lib
cudnn_adv_infer.lib
cudnn_adv_infer64_8.lib
cudnn_adv_train.lib
cudnn_adv_train64_8.lib
cudnn_cnn_infer.lib
cudnn_cnn_infer64_8.lib
cudnn_cnn_train.lib
cudnn_cnn_train64_8.lib
cudnn_ops_infer.lib
cudnn_ops_infer64_8.lib
cudnn_ops_train.lib
cudnn_ops_train64_8.lib
cufft.lib
cufftw.lib
curand.lib
cusolver.lib
cusolverMg.lib
cusparse.lib
nppc.lib
nppial.lib
nppicc.lib
nppidei.lib
nppif.lib
nppig.lib
nppim.lib
nppist.lib
nppisu.lib
nppitc.lib
npps.lib
nvblas.lib
nvjpeg.lib
nvml.lib
nvrtc.lib
OpenCL.lib
4 pytorch1.13 安装
4.1 pytorch1.13 安装
进入pytorch 官网,点击install
选择如下,在自己的python 环境使用pip命令进行安装
4.1 pytorch1.13 安装测试
打开终端,切换到pytorch安装环境下,检测程序如下:
import torch
print(torch.__version__)
print(torch.cuda.is_available())