gboost算法的推导

本文详细介绍了xgboost算法的原理,它作为gbdt的升级版,利用二阶导数和考虑模型复杂度。文章通过定义模型、损失函数,解释了xgboost如何通过泰勒展开和贪婪算法来训练残差树,以优化损失并防止过拟合。
摘要由CSDN通过智能技术生成
一、xgboost的原理

首先值得说明的是,xgboost是gbdt的升级版,有兴趣的话可以先看看gbdt的推导。xgboost同样是构造一棵棵树来拟合残差;
不同之处在于
(1)gbdt使用一阶导,xgboost使用二阶导。
(2)xgboost在loss中包括模型复杂度,gbdt没有。

二、xgboost的推导

首先我们来定义一下模型:
1.符号定义:
在这里插入图片描述
2.模型定义    
假设我们迭代T轮,意味着我们要生成T棵残差树:
在这里插入图片描述
值得注意的几点:     
1.其实一般来说,前面还要加上一个,但是作者在这里初始化的时候将设置为0,所以不用加了。
2. f t f_t ft( x i x_i xi)表示的是第t棵残差树对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值