深度学习:第四章:循环神经网络RNN和LSTM-CSDN博客
神经网络:一个由大量简单处理单元组成的高度复杂的大规模非线性自适应系统
大脑神经元的特点:
1高电位激活:膜电位高出静息电位一定值后,神经元被激活
2不应期:一神经元不能连续被激活。绝对不应期:不管神经元的膜电位多大,都不能被激活;相对不应期,当神经元的膜电位达到一定的阈值后被激活,这一阈值随时间减小,最后恢复到静息电位
3突触特性:分为兴奋性和抑制性
4时空整合性:1的激活是来自不同树突的兴奋、抑制信号的在一段时间内(几ms内)累加
5二元性:神经细胞只有激活(发出兴奋抑制信号)和未激活两种状态
M-P模型: 也被称为处理单元PE 模拟一个神经元
六个基本特征:前四点与神经元一致,为使PE不过于复杂---后两个特点
对于某一个神经元 j,它可能接受同时接受了许多个输入信号,用 Xi 表示。
由于生物神经元具有不同的突触性质和突触强度,所以对神经元的影响不同,我们用权值 wij 来表示,其正负模拟了生物神经元中突出的兴奋和抑制,其大小则代表了突出的不同连接强度。
θj表示为一个阈值,或称为偏置。
由于累加性,我们对全部输入信号进行累加整合,相当于生物神经元中的膜电位,其值就为:
若将阈值看成是神经元j的一个输入x0的权重 w0j,则式子可以简化为
yj表示神经元j的输出,函数ff称为激活函数。 yi也常写成