第一章——整数的唯一分解定理

  • 注释:整除符号前的值不能为00

整除性

  • 定义
    1\small 1. 整除的定义:a\small a整除b    \small b \iffb\small b能被a\small a整除    \small \iffab    kb=ak    \small a \mid b\iff \exist k,b=ak \iff a\small ab\small b的因子    b\small \iff ba\small a的倍数
    2\small 2. 不整除的定义:a\small a不整除b    \small b \iffb\small b不能被a\small a整除    \small \iffab    kbak    \small a \nmid b\iff\forall k,b\neq ak \iff a\small a不是b\small b的因子    b\small \iff b不是a\small a的倍数
  • 性质
    1\small 1.整除传递性: 若abbc\small a\mid b,b\mid cac\small a\mid c
    证明
    abbc\small \because a \mid b,b\mid c
    k1b=ak1k2c=bk2\small \therefore\exists k_1,b=ak_1,\exists k_2,c=bk_2
    c=ak1k2\small \therefore c=ak_1k_2
    ac\small \therefore a\mid c
    证毕
    2\small 2.乘积不变性:若ab\small a\mid b,acbc\small ac\mid bc
    证明
    ab\small \because a \mid b
    k1b=ak1\small \therefore\exists k_1,b=ak_1
    bc=ack1\small \therefore bc=ack_1
    acbc\small \therefore ac\mid bc
    证毕
    3\small 3.线性组合性:若cacb\small c\mid a,c\mid bcax+by\small c\mid ax+by
    证明
    cacb\small \because c \mid a,c\mid b
    k1a=ck1k2b=ck2\small \therefore\exists k_1,a=ck_1,\exists k_2,b=ck_2
    ax+by=ck1x+ck2y=c(k1x+k2y)\small \therefore ax+by=ck_1x+ck_2y=c(k_1x+k_2y)
    cax+by\small \therefore c\mid ax+by
    证毕
    4\small 4.因子较小性:若abb0\small a\mid b,b\neq 0ab\small | a|\leq | b|
    证明
    ab\small \because a\mid b
    k1b=ak1\small \therefore\exists k_1,b=ak_1
    b0\small \because b\neq 0
    k10\small \therefore k_1\neq0
    k11\small \therefore |k_1|\geq1
    b=ak1b=a×k1\small \because |b|=|ak_1|,|b|=|a|\times|k_1|
    ab\small \therefore |a|\leq |b|
    证毕
    5\small 5.约分不变性:若acbc\small ac\mid bc,ab\small a\mid b
    证明
    acbc\small \because ac\mid bc
    k1bc=ack1\small \therefore\exists k_1,bc=ack_1
    b=ak1\small \therefore b=ak_1
    ab\small \therefore a\mid b
    证毕
    6\small 6.因子对称性:若abb0\small a\mid b,b\neq 0bab\small \large\frac{b}{a}\small\mid b
    证明
    ab\small \because a\mid b
    k1b=ak1\small \therefore\exists k_1,b=ak_1
    b0\small \because b\neq 0
    ba=k10\small \therefore \large\frac{b}{a}\small=k_1\neq0
    b=baaba0\small \therefore b=\large\frac{b}{a}\small a,\large\frac{b}{a}\small \neq0
    bab\small \therefore\large\frac{b}{a}\small\mid b
    证毕
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读