初等数论 整数的唯一分解定理(第1章)1 整除性,最大公因式,最小公倍数

一.整除性(1.1)
在这里插入图片描述1.整除的定义:
在这里插入图片描述

注:①由于无法显示标准符号,对 a , b ∈ Z a,b∈Z a,bZ,若 b b b不整除 a a a,以下在非图片中均记为 b ∤    a b\not|\:\:a ba

2.性质:

a , b , c ∈ Z a,b,c∈Z a,b,cZ
①如果 b   ∣   a , c   ∣   b b\,|\,a,c\,|\,b ba,cb,则 c   ∣   a c\,|\,a ca
②如果 b   ∣   a b\,|\,a ba,则 c b   ∣   c a cb\,|\,ca cbca
③如果 c   ∣   a , c   ∣   b c\,|\,a,c\,|\,b ca,cb,则对 ∀ m , n ∈ Z ∀m,n∈Z m,nZ,有 c   ∣   m a + n b c\,|\,ma+nb cma+nb
④如果 b   ∣   a b\,|\,a ba a ≠ 0 a≠0 a=0,则 ∣ b ∣ ≤ ∣ a ∣ |b|≤|a| ba
⑤如果 c b   ∣   c a cb\,|\,ca cbca,则 b   ∣   a b\,|\,a ba,
⑥如果 b   ∣   a b\,|\,a ba a ≠ 0 a≠0 a=0,则 a b   ∣   a \frac{a}{b}\,|\,a baa

3.不完全商与非负最小剩余
(1)分解整数:

定理1:设 a , b ∈ Z a,b∈Z a,bZ,其中 b > 0 b>0 b>0,则存在唯一的 q , r ∈ Z q,r∈Z q,rZ,使得 a = b q + r   ( 0 ≤ r < b ) ( 2 ) a=bq+r\,(0≤r<b)\qquad(2) a=bq+r(0r<b)(2)成立
在这里插入图片描述

(2)定义:
在这里插入图片描述
(3)性质:

定理2:对于 a 1 , a 2 , b ∈ Z a_1,a_2,b∈Z a1,a2,bZ,其中 b > 0 b>0 b>0,有 < a 1 + a 2 > = < < a 1 > + < a 2 > > ( 3 ) < a 1 − a 2 > = < < a 1 > − < a 2 > > ( 4 ) < a 1 a 2 > = < < a 1 > < a 2 > > ( 5 ) <a_1+a_2>=<<a_1>+<a_2>>\qquad(3)\\<a_1-a_2>=<<a_1>-<a_2>>\qquad(4)\\<a_1a_2>=<<a_1><a_2>>\qquad(5) <a1+a2>=<<a1>+<a2>>(3)<a1a2>=<<a1><a2>>(4)<a1a2>=<<a1><a2>>(5)
在这里插入图片描述

二.最大公因数(1.2)
1.定义:
在这里插入图片描述
2.求解
(1)辗转相除法:
在这里插入图片描述在这里插入图片描述

定理2:对 ∀ a , b ∈ Z + , ( a , b ) ∀a,b∈Z_+,(a,b) a,bZ+,(a,b)就是(1)中最后1个不等于0的余数,即 ( a , b ) = r n (a,b)=r_n (a,b)=rn
在这里插入图片描述

(2)绝对最小剩余:
在这里插入图片描述
3.性质:

定理1:设 a , b , c a,b,c a,b,c ∀ 3 ∀3 3个不全为0的整数,且 a = b q + c a=bq+c a=bq+c其中 q ∈ Z q∈Z qZ,则 ( a , b ) = ( b , c ) (a,b)=(b,c) (a,b)=(b,c)
在这里插入图片描述

定理3:对 ∀ a , b ∈ Z + , ∃ m , n ∈ Z ∀a,b∈Z_+,∃m,n∈Z a,bZ+,m,nZ,使得 ( a , b ) = m a + n b (a,b)=ma+nb (a,b)=ma+nb
在这里插入图片描述
推论: a , b a,b a,b的公因数都是 ( a , b ) (a,b) (a,b)的因数

定理4:若 a ∣ b c , ( a , b = 1 ) a|bc,(a,b=1) abc,(a,b=1),则 a ∣ c a|c ac
在这里插入图片描述

在这里插入图片描述
定理5:设 a 1 . . . a n ∈ Z +   ( n > 2 ) a_1...a_n∈Z_+\,(n>2) a1...anZ+(n>2),则 ( a 1 , a 2 . . . a n ) = d n (a_1,a_2...a_n)=d_n (a1,a2...an)=dn
在这里插入图片描述

定理6:设 a 1 . . . a n ∈ Z +   ( n > 2 ) a_1...a_n∈Z_+\,(n>2) a1...anZ+(n>2),则 ∃ x 1 . . . x n ∈ Z ∃x_1...x_n∈Z x1...xnZ,使得 ( a 1 , a 2 . . . a n ) = a 1 x 1 + . . . + a n x n (a_1,a_2...a_n)=a_1x_1+...+a_nx_n (a1,a2...an)=a1x1+...+anxn
在这里插入图片描述

三.最小公倍数(1.3)
1.定义:
在这里插入图片描述
2.求解
在这里插入图片描述
(1)2个正整数的最小公倍数:

定理1:设 a , b a,b a,b是任给的2个正整数,则
① a , b ①a,b a,b的所有公倍数就是 [ a , b ] [a,b] [a,b]的所有倍数
② [ a , b ] = a b ( a , b ) ②[a,b]=\frac{ab}{(a,b)} [a,b]=(a,b)ab
在这里插入图片描述

(2)2个以上正整数的最小公倍数::
在这里插入图片描述

定理2:若 a 1 . . . a n ∈ Z +   ( n > 2 ) a_1...a_n∈Z_+\,(n>2) a1...anZ+(n>2),则 [ a 1 , a 2 . . . a n ] = m n [a_1,a_2...a_n]=m_n [a1,a2...an]=mn
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值