3-3 另类循环队列 (20分)
如果用一个循环数组表示队列,并且只设队列头指针Front,不设尾指针Rear,而是另设Count记录队列中元素个数。请编写算法实现队列的入队和出队操作。
函数接口定义:
bool AddQ( Queue Q, ElementType X );
ElementType DeleteQ( Queue Q );
其中Queue结构定义如下:
typedef int Position;
typedef struct QNode *PtrToQNode;
struct QNode {
ElementType *Data; /* 存储元素的数组 */
Position Front; /* 队列的头指针 */
int Count; /* 队列中元素个数 */
int MaxSize; /* 队列最大容量 */
};
typedef PtrToQNode Queue;
注意:如果队列已满,AddQ函数必须输出“Queue Full”并且返回false;如果队列是空的,则DeleteQ函数必须输出“Queue Empty”,并且返回ERROR。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
#define ERROR -1
typedef int ElementType;
typedef enum { addq, delq, end } Operation;
typedef enum { false, true } bool;
typedef int Position;
typedef struct QNode *PtrToQNode;
struct QNode {
ElementType *Data; /* 存储元素的数组 */
Position Front; /* 队列的头、尾指针 */
int Count; /* 队列中元素个数 */
int MaxSize; /* 队列最大容量 */
};
typedef PtrToQNode Queue;
Queue CreateQueue( int MaxSize )
{
Queue Q = (Queue)malloc(sizeof(struct QNode));
Q->Data = (ElementType *)malloc(MaxSize * sizeof(ElementType));
Q->Front = 0;
Q->Count = 0;
Q->MaxSize = MaxSize;
return Q;
}
bool AddQ( Queue Q, ElementType X );
ElementType DeleteQ( Queue Q );
Operation GetOp(); /* 裁判实现,细节不表 */
int main()
{
ElementType X;
Queue Q;
int N, done = 0;
scanf("%d", &N);
Q = CreateQueue(N);
while ( !done ) {
switch( GetOp() ) {
case addq:
scanf("%d", &X);
AddQ(Q, X);
break;
case delq:
X = DeleteQ(Q);
if ( X!=ERROR ) printf("%d is out\n", X);
break;
case end:
while (Q->Count) printf("%d ", DeleteQ(Q));
done = 1;
break;
}
}
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
4
Del
Add 5
Add 4
Add 3
Del
Del
Add 2
Add 1
Add 0
Add 10
End
输出样例:
Queue Empty
5 is out
4 is out
Queue Full
3 2 1 0
AC代码:
这是一个循环队列,当开始的时候不知道为什么一直不对,后来去找了一下别人的做法,才发现自己错了,以后可要认真读题啊!
有机会再回来做做这个题吧!
bool AddQ( Queue Q, ElementType X ) {
if(Q->Count==Q->MaxSize) {
printf("Queue Full\n");
return false;
} else {
Q->Data[(Q->Count+Q->Front)%Q->MaxSize]=X;
//这里是循环队列,啊啊,一直是错的
Q->Count++;
return true;
}
}
ElementType DeleteQ( Queue Q ) {
if(Q->Count==0) {
printf("Queue Empty\n");
return ERROR;
} else {
ElementType x=Q->Data[Q->Front];
Q->Count--;
Q->Front=(Q->Front+1)%Q->MaxSize; //注意处理方式
return x;
}
}