文章目录
MetaAD: Metabolism-Aware Anomaly Detection for Parkinson’s Disease in 3D 18F-FDG PET
摘要
背景: 多巴胺转运体(DAT)成像,如¹¹C-CFT PET,在帕金森病(PD)诊断中表现出显著的优势。然而,大多数医院无法获取DAT成像,而是依赖更常见的¹⁸F-FDG PET。然而,在视觉分析中,¹⁸F-FDG PET可能无法呈现PD的主要异常特征,从而影响计算机辅助诊断(CAD)的效果。
目的: 针对这一问题,提出了一种代谢感知异常检测(MetaAD)框架,以突出¹⁸F-FDG PET扫描中与PD相关的代谢异常特征。
方法: MetaAD首先将输入的FDG图像转换为具有健康模式的合成CFT图像,并随后通过逆向模态映射重建FDG图像。输入图像与重建图像之间的视觉差异可作为PD代谢异常的指示信号。此外,该方法采用双路径训练策略,使生成器通过循环模态转换学习显式的正常数据分布,同时增强对健康代谢特征的记忆能力。
结果: 实验结果表明,MetaAD在PD诊断中的可视化可解释性和异常检测能力方面均优于现有方法,同时还能有效辅助监督式CAD方法的诊断性能。代码已公开,链接为 https://github.com/MedAIerHHL/MetaAD。
方法
Fig. 1 展示了 Parkinson’s Disease(PD)与正常对照(NC)在 PET 成像中的差异。(a) ¹¹C-CFT PET 可揭示 PD 与 NC 之间的明显差异,而 ¹⁸F-FDG PET 在视觉上表现出较小的差异。(b) 所提出的 MetaAD 方法能够在 FDG 图像 中突出 PD 患者的代谢异常区域,其中 红色区域 表示代谢水平升高的异常区域,而 蓝色区域 代表代谢水平降低的异常区域。
图 2.所提出的 MetaAD 采用双路径训练方案,包括 (a) 一类循环模态转换和 (b) 异常代谢抑制。
实验结果