MetaAD:3D 18F-FDG PET 中帕金森病的代谢感知异常检测

MetaAD: Metabolism-Aware Anomaly Detection for Parkinson’s Disease in 3D 18F-FDG PET

摘要

背景: 多巴胺转运体(DAT)成像,如¹¹C-CFT PET,在帕金森病(PD)诊断中表现出显著的优势。然而,大多数医院无法获取DAT成像,而是依赖更常见的¹⁸F-FDG PET。然而,在视觉分析中,¹⁸F-FDG PET可能无法呈现PD的主要异常特征,从而影响计算机辅助诊断(CAD)的效果。

目的: 针对这一问题,提出了一种代谢感知异常检测(MetaAD)框架,以突出¹⁸F-FDG PET扫描中与PD相关的代谢异常特征。

方法: MetaAD首先将输入的FDG图像转换为具有健康模式的合成CFT图像,并随后通过逆向模态映射重建FDG图像。输入图像与重建图像之间的视觉差异可作为PD代谢异常的指示信号。此外,该方法采用双路径训练策略,使生成器通过循环模态转换学习显式的正常数据分布,同时增强对健康代谢特征的记忆能力。

结果: 实验结果表明,MetaAD在PD诊断中的可视化可解释性和异常检测能力方面均优于现有方法,同时还能有效辅助监督式CAD方法的诊断性能。代码已公开,链接为 https://github.com/MedAIerHHL/MetaAD

方法

在这里插入图片描述
Fig. 1 展示了 Parkinson’s Disease(PD)与正常对照(NC)在 PET 成像中的差异。(a) ¹¹C-CFT PET 可揭示 PD 与 NC 之间的明显差异,而 ¹⁸F-FDG PET 在视觉上表现出较小的差异。(b) 所提出的 MetaAD 方法能够在 FDG 图像 中突出 PD 患者的代谢异常区域,其中 红色区域 表示代谢水平升高的异常区域,而 蓝色区域 代表代谢水平降低的异常区域。
在这里插入图片描述
图 2.所提出的 MetaAD 采用双路径训练方案,包括 (a) 一类循环模态转换和 (b) 异常代谢抑制。

实验结果在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值