迈向具有域通用可解释性的图神经网络,用于基于 fMRI 的脑部疾病诊断

Towards Graph Neural Networks with Domain-Generalizable Explainability for fMRI-Based Brain Disorder Diagnosis

摘要

背景: 图神经网络(GNNs)已成为基于功能磁共振成像(fMRI)数据诊断脑部疾病的前沿方法。然而,考虑到功能性脑网络的高复杂性以及不同临床中心fMRI数据的强变异性,GNNs 在可解释性和泛化性方面仍面临挑战。尽管已有许多研究分别探讨了GNNs的可解释性和泛化性,但很少有方法能够同时兼顾这两个方面。

目的: 统一GNNs的可解释性与泛化性问题,并从可解释性的角度重新审视fMRI数据在脑疾病诊断中的领域泛化(DG)问题。目标是学习领域泛化的解释因子,以增强跨中心的图表示学习,从而提高脑疾病诊断的稳定性与准确性。

方法: 提出一种专门的元学习框架,并结合可解释性-泛化性(XG)正则化策略,以学习适用于fMRI BOLD信号的诊断GNN模型(XG-GNN)。XG-GNN能够以任务导向的方式构建非线性功能网络,并确保所学习的个体网络的组间差异能够稳定地迁移至未见的fMRI中心,从而同步提升诊断的可解释性和泛化能力。

结果: 在ABIDE数据集上的实验结果验证了XG-GNN的有效性。源码将公开于 https://github.com/ladderlab-xjtu/XG-GNN

方法

在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值