唯一分解定理,约数个数定理,约数和定理

算数基本定理(唯一分解定理)

每个大于1的自然数均可写为质数的积,而且这些素因子按大小排列之后,写法仅有一种方式。
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $—知乎

也就是 n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p k a k n=p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_k^{a_k} n=p1a1p2a2p3a3...pkak
证明:(反证法)
为了真正地证明,分解质因数的方法是唯一的,我们将再次用到反证法。
假设存在某些数,它们有至少两种分解方法。
那么根据上文提到的“非空正整数集里存在最小的元素”,一定有一个最小的数M,它能用至少两种方法表示成质数的乘积:
M = P 1 ∗ P 2 ∗ … ∗ P r = Q 1 ∗ Q 2 ∗ … ∗ Q s M = P_1 * P_2 * … * P_r = Q_1 * Q_2 * … * Q_s M=P1P2Pr=Q1Q2Qs

下面我们将看到,这种假设会推出一个多么荒谬的结果来。

不妨设 P 1 < = P 2 < = … < = P r , Q 1 < = Q 2 < = … < = Q s P_1 <= P_2 <= … <= P_r, Q_1 <= Q_2 <= … <= Q_s P1<=P2<=<=Pr,Q1<=Q2<=<=Qs
显然, P 1 P_1 P1是不等于 Q 1 Q_1 Q1的,不然两边同时约掉它,我们就得到一个更小的有两种分解方法的数。

不妨设 P 1 < Q 1 P_1 < Q_1 P1<Q1,那么我们用 P 1 P_1 P1替换掉等式最右边中的 Q 1 Q_1 Q1,得到一个比 M M M更小的数 T = P 1 ∗ Q 2 ∗ Q 3 ∗ … ∗ Q s T = P_1 * Q_2 * Q_3 * … * Q_s T=P1Q2Q3Qs

M ’ = M – T M’ = M – T M=MT,我们得到 M ’ M’ M的两种表达:
$M’ = (P_1 * P_2 * … * P_r) – (P_1 * Q_2 * … * Q_s) $
      = P 1 ∗ ( P 2 ∗ . . ∗ P r – Q 2 ∗ … ∗ Q s ) . . . . . . ( 1 ) \ \ \ \ \ = P_1 * (P_2 * .. * P_r – Q_2 * … * Q_s) ...... (1)      =P1(P2..PrQ2Qs)......(1)
$M’ = (Q_1 * Q_2 * … * Q_s) – (P_1 * Q_2 * … * Q_s) $
$ \ \ \ \ = (Q_1 – P_1) * Q_2 * … * Q_s ……………… (2)$
由于 T T T M M M小,因此 M ’ M’ M是正整数。
从(1)式中我们立即看到, P 1 P_1 P1 M ’ M’ M的一个质因子。
注意到 M ’ M’ M M M M小,因此它的质因数分解方式应该是唯一的,可知 P 1 P_1 P1也应该出现在表达式(2)中。
既然 P 1 P_1 P1比所有的 Q Q Q都要小,因此它不可能恰好是(2)式中的某个 Q Q Q,于是只可能被包含在因子 ( Q 1 − P 1 ) (Q_1-P_1) (Q1P1)里。
但这就意味着, Q 1 − P 1 P 1 \frac {Q_1-P_1}{P_1} P1Q1P1除得尽,也就是说 Q 1 P 1 − 1 \frac {Q_1}{P_1-1} P11Q1是一个整数,
这样 Q 1 P 1 \frac {Q_1}{P_1} P1Q1也必须得是整数。我们立即看出, P 1 P_1 P1必须也是 Q 1 Q_1 Q1的一个因子,这与 Q 1 Q_1 Q1是质数矛盾了。
这说明,我们最初的假设是错误的。

约数个数定理:

约数个数= ∏ i = 1 k ( a i + 1 ) \displaystyle \prod^{k}_{i= 1} (a_i + 1) i=1k(ai+1)
证明:
由唯一分解定理 n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p k a k n = p_1 ^{a_1} p_2 ^{a_2}p_3 ^{a_3}...p_k ^{a_k} n=p1a1p2a2p3a3...pkak可得:
n n n的约数一定是 p 1 x . . . p k z p_1^{x} ... p_k^{z} p1x...pkz x ∈ [ 0 , a 1 ] . . . z ∈ [ 0 , a k ] x \in [0, a_1] ... z \in [0, a_k] x[0,a1]...z[0,ak]
每一个可以取 a i + 1 a_i +1 ai+种可能.
根据乘法原理约数个数 = ( a 1 + 1 ) ∗ ( a 2 + 1 ) ∗ . . . ∗ ( a k + 1 ) = (a_1 + 1) \ast (a_2 + 1) \ast ...\ast (a_k + 1) =(a1+1)(a2+1)...(ak+1).
即: ∏ i = 1 k ( a i + 1 ) \displaystyle \prod^{k}_{i= 1} (a_i + 1) i=1k(ai+1)

约数和定理

sum = ∏ i = 1 n ∑ j = 0 a i p i j \displaystyle \prod_{i =1}^n \sum_{j = 0}^{a_i}p_i^j i=1nj=0aipij
证明:
现将n质因数分解.
n = p 1 a 1 p 2 a 2 . . . p k a k n = p_1^{a_1}p_2^{a_2}...p_k^{a_k} n=p1a1p2a2...pkak
则:其任意一因子p可表示为:
p = p 1 b 1 × p 2 b 2 × . . . ( 0 = < b 1 < = a 1 , 0 = < b 2 < = a 2 , . . . ) p=p_1^{b1}\times p_2^{b2}\times ... (0 =<b1<=a1,0=<b2<=a2,...) p=p1b1×p2b2×...(0=<b1<=a1,0=<b2<=a2,...)
根据乘法原理他们的和为:
( p 1 0 + p 1 1 + … p 1 a 1 ) ( p 2 0 + p 2 1 + … p 2 a 2 ) … ( p k 0 + p k 1 + … p k a k ) (p_1^0 +p_1^1 +…p_1^{a_1})(p_2^0 +p_2^1 +…p_2^{a_2})…(p_k^0+p_k^1 +…p_k ^{a_k}) (p10+p11+p1a1)(p20+p21+p2a2)(pk0+pk1+pkak)
所以sum = ∏ i = 1 n ∑ j = 0 a i p i j \displaystyle \prod_{i =1}^n \sum_{j = 0}^{a_i}p_i^j i=1nj=0aipij

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值