欧拉函数
φ
(
n
)
o
r
ϕ
(
n
)
\varphi(n) or \phi(n)
φ(n)orϕ(n)
表示小于n的正整数与n互质的数的个数.
显然有:
当n为质数时
φ
(
n
)
\varphi(n)
φ(n)
当n为奇数时
φ
(
2
n
)
=
φ
(
n
)
\varphi(2n) = \varphi(n)
φ(2n)=φ(n)
证明:
∵
\because
∵欧拉函数为积性函数.
∴
φ
(
2
n
)
=
φ
(
2
)
∗
φ
(
n
)
\therefore \varphi(2n) = \varphi(2) \ast \varphi(n)
∴φ(2n)=φ(2)∗φ(n)
∵
φ
(
2
)
=
1
\because \varphi(2)=1
∵φ(2)=1
∴
φ
(
2
n
)
=
φ
(
n
)
\therefore \varphi(2n) = \varphi(n)
∴φ(2n)=φ(n)
欧拉函数通项公式
φ
(
n
)
=
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
(
1
−
1
p
3
)
.
.
.
(
1
−
1
p
k
)
\varphi (n)= n (1 - \frac {1} {p_1})(1 - \frac {1} {p_2})(1 - \frac {1} {p_3})...(1 - \frac {1} {p_k})
φ(n)=n(1−p11)(1−p21)(1−p31)...(1−pk1)
证明:
若
n
=
p
k
,
p
n = p ^ k ,p
n=pk,p为质数,则
φ
(
p
k
)
=
p
k
−
p
k
−
1
\varphi (p^k) = p ^k - p ^{k - 1}
φ(pk)=pk−pk−1
当一个数不包含质因子
p
p
p时就能与
n
n
n互质,
小于等于
n
n
n的数中包含质因子
p
p
p的只有
p
k
−
1
p^{k-1}
pk−1 个,他们是:
p
,
2
∗
p
,
3
∗
p
,
.
.
.
,
p
k
−
1
∗
p
p, 2*p, 3* p, ...,p ^{k - 1} ∗p
p,2∗p,3∗p,...,pk−1∗p,把他们去除即可.
由唯一分解定理可得:
n
=
p
1
a
1
p
2
a
2
p
3
a
3
.
.
.
p
k
a
k
n = p_1 ^{a_1} p_2 ^{a_2}p_3 ^{a_3}...p_k ^{a_k}
n=p1a1p2a2p3a3...pkak
则
φ
(
n
)
=
φ
(
p
1
a
1
)
φ
(
p
2
a
2
)
φ
(
p
3
a
3
)
.
.
.
φ
(
p
k
a
k
)
\varphi (n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\varphi(p_3^{a_3})...\varphi(p_k^{a_k})
φ(n)=φ(p1a1)φ(p2a2)φ(p3a3)...φ(pkak)
根据上述
φ
(
p
k
)
=
p
k
−
p
k
−
1
\varphi (p^k) = p ^k - p ^{k - 1}
φ(pk)=pk−pk−1可得:
φ
(
p
)
=
p
k
(
1
−
1
p
k
\ \ \ \ \ \ \ \ \ \ \ \ \ \varphi (p) = p^k(1 - \frac{1}{p^k}
φ(p)=pk(1−pk1)
则
φ
(
n
)
=
φ
(
p
1
a
1
)
φ
(
p
2
a
2
)
φ
(
p
3
a
3
)
.
.
.
φ
(
p
k
a
k
)
\varphi (n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\varphi(p_3^{a_3})...\varphi(p_k^{a_k})
φ(n)=φ(p1a1)φ(p2a2)φ(p3a3)...φ(pkak)可化为
φ
(
n
)
=
p
1
a
1
(
1
−
1
p
1
)
p
2
a
2
(
1
−
1
p
2
)
p
3
a
3
(
1
−
1
p
3
)
.
.
.
p
k
a
k
(
1
−
1
p
k
)
\ \ \ \ \varphi (n) = p_1 ^{a_1}(1 - \frac {1} {p_1}) p_2 ^{a_2}(1 - \frac {1} {p_2})p_3 ^{a_3}(1 - \frac {1} {p_3})...p_k ^{a_k}(1 - \frac {1} {p_k})
φ(n)=p1a1(1−p11)p2a2(1−p21)p3a3(1−p31)...pkak(1−pk1)
=
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
(
1
−
1
p
3
)
.
.
.
(
1
−
1
p
k
)
\ \ \ \ \ \ \ \ \ \ \ = n (1 - \frac {1} {p_1})(1 - \frac {1} {p_2})(1 - \frac {1} {p_3})...(1 - \frac {1} {p_k})
=n(1−p11)(1−p21)(1−p31)...(1−pk1)
欧拉函数的积性证明.
条件是m与n互质
可以得到
ϕ
(
m
n
)
=
ϕ
(
m
)
∗
ϕ
(
n
)
\phi(mn) = \phi(m) \ast \phi(n)
ϕ(mn)=ϕ(m)∗ϕ(n)
证明:
m
=
p
1
a
1
p
2
a
2
.
.
.
p
k
a
k
m = p_1^{a_1}p_2^{a_2}...p_k^{a_k}
m=p1a1p2a2...pkak
ϕ
(
m
)
=
m
(
1
−
1
p
1
)
(
1
−
1
p
2
)
.
.
.
(
1
−
1
p
k
)
\phi (m) = m(1- \frac {1}{p_1})(1- \frac {1}{p_2})...(1- \frac {1}{p_k})
ϕ(m)=m(1−p11)(1−p21)...(1−pk1)
n
=
p
1
′
a
1
′
p
2
′
a
2
′
.
.
.
p
k
′
a
k
′
n = p_1'^{a_1'}p_2'^{a_2'}...p_k'^{a_k'}
n=p1′a1′p2′a2′...pk′ak′
ϕ
(
n
)
=
n
(
1
−
1
p
1
′
)
(
1
−
1
p
2
′
)
.
.
.
(
1
−
1
p
k
′
)
\phi(n) = n(1- \frac {1}{p_1'})(1- \frac {1}{p_2'})...(1- \frac {1}{p_k'})
ϕ(n)=n(1−p1′1)(1−p2′1)...(1−pk′1)
∵
m
与
n
互
质
\because m与n互质
∵m与n互质
∴
p
1
,
p
2
.
.
.
p
k
与
p
1
′
p
2
′
.
.
.
p
k
′
\therefore p_1,p_2...p_k与p_1'p_2'...p_k'
∴p1,p2...pk与p1′p2′...pk′两两互不相同
∴
ϕ
(
m
n
)
=
m
n
(
1
−
1
p
1
)
(
1
−
1
p
2
)
.
.
.
(
1
−
1
p
k
)
(
1
−
1
p
1
′
)
(
1
−
1
p
2
′
)
.
.
.
(
1
−
1
p
k
′
)
\therefore \phi(mn) = mn(1- \frac {1}{p_1})(1- \frac {1}{p_2})...(1- \frac {1}{p_k})(1- \frac {1}{p_1'})(1- \frac {1}{p_2'})...(1- \frac {1}{p_k'})
∴ϕ(mn)=mn(1−p11)(1−p21)...(1−pk1)(1−p1′1)(1−p2′1)...(1−pk′1)
∴
ϕ
(
m
n
)
=
ϕ
(
m
)
∗
ϕ
(
n
)
\therefore \phi(mn) = \phi(m) \ast \phi(n)
∴ϕ(mn)=ϕ(m)∗ϕ(n)
欧拉定理:
当a 与 p互质的时候则有
a
φ
(
p
)
≡
1
(
m
o
d
p
)
a^{\varphi(p)} \equiv 1 \ (mod \ p)
aφ(p)≡1 (mod p)
设A=
{
x
1
,
x
2
,
x
3
.
.
.
x
ϕ
(
n
)
}
\{x_1, x_2,x_3...x_{\phi(n)}\}
{x1,x2,x3...xϕ(n)}为1—n中与n互质的数的集合.
则他们模n两两不相同,且余数与n互质
下面我们来证明B=
{
a
x
1
,
a
x
2
,
a
x
3
.
.
.
a
x
ϕ
(
n
)
}
\{ax_1, ax_2,ax_3...ax_{\phi(n)}\}
{ax1,ax2,ax3...axϕ(n)}也有这个性质
mod n 两两互不相同 (反证法):
假设
i
!
=
j
i != j
i!=j,
x
i
,
x
j
∈
B
x_i, x_j \in B
xi,xj∈B那么就有
a
x
i
≡
a
x
j
(
m
o
d
n
)
ax_i \equiv ax_j (mod \ n)
axi≡axj(mod n)
那么就有
a
x
I
−
a
x
J
≡
0
(
m
o
d
n
)
ax_I - ax_J \equiv 0 (mod \ n)
axI−axJ≡0(mod n)
因为
x
i
−
x
J
x_i - x_J
xi−xJ 与n互质,所以不会有这样的解,得证。
余数都与
n
n
n互质:因为
a
a
a与
n
n
n互质,
x
i
x_i
xi与
n
n
n互质,
所以
a
x
i
ax_i
axi也与
n
n
n互质,
a
x
i
ax_i
axi模
n
n
n后也与
n
n
n互质。
∏
i
=
1
φ
(
n
)
a
x
i
≡
∏
i
=
1
φ
(
n
)
x
i
(
m
o
d
n
)
\displaystyle \prod_{i = 1}^{\varphi(n)}ax_i \equiv \prod_{i=1}^{\varphi(n)}x_i (mod \ n)
i=1∏φ(n)axi≡i=1∏φ(n)xi(mod n)
a
φ
(
n
)
∏
i
=
1
φ
(
n
)
x
i
≡
∏
i
=
1
φ
(
n
)
x
i
(
m
o
d
n
)
\displaystyle a^{\varphi(n)} \prod_{i = 1}^{\varphi(n)}x_i \equiv \prod_{i=1}^{\varphi(n)}x_i (mod \ n)
aφ(n)i=1∏φ(n)xi≡i=1∏φ(n)xi(mod n)
∴
a
φ
(
n
)
≡
0
(
m
o
d
n
)
\therefore a^{\varphi(n)} \equiv 0 (mod \ n)
∴aφ(n)≡0(mod n)
特别的,当n为质数的时候
φ
(
n
)
=
n
−
1
\varphi(n) = n - 1
φ(n)=n−1
那么式子就变成了
a
n
−
1
≡
0
(
m
o
d
n
)
a^{n-1} \equiv 0 (mod \ n)
an−1≡0(mod n)
这就是费马小定理,可以用来求逆元.