欧拉函数与欧拉定理

欧拉函数

φ ( n ) o r ϕ ( n ) \varphi(n) or \phi(n) φ(n)orϕ(n)
表示小于n的正整数与n互质的数的个数.
显然有:
当n为质数时 φ ( n ) \varphi(n) φ(n)
当n为奇数时 φ ( 2 n ) = φ ( n ) \varphi(2n) = \varphi(n) φ(2n)=φ(n)
证明:
∵ \because 欧拉函数为积性函数.
∴ φ ( 2 n ) = φ ( 2 ) ∗ φ ( n ) \therefore \varphi(2n) = \varphi(2) \ast \varphi(n) φ(2n)=φ(2)φ(n)
∵ φ ( 2 ) = 1 \because \varphi(2)=1 φ(2)=1
∴ φ ( 2 n ) = φ ( n ) \therefore \varphi(2n) = \varphi(n) φ(2n)=φ(n)

欧拉函数通项公式

φ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ( 1 − 1 p 3 ) . . . ( 1 − 1 p k ) \varphi (n)= n (1 - \frac {1} {p_1})(1 - \frac {1} {p_2})(1 - \frac {1} {p_3})...(1 - \frac {1} {p_k}) φ(n)=n(1p11)(1p21)(1p31)...(1pk1)
证明:
n = p k , p n = p ^ k ,p n=pk,p为质数,则 φ ( p k ) = p k − p k − 1 \varphi (p^k) = p ^k - p ^{k - 1} φ(pk)=pkpk1
当一个数不包含质因子 p p p时就能与 n n n互质,
小于等于 n n n的数中包含质因子 p p p的只有 p k − 1 p^{k-1} pk1 个,他们是:
p , 2 ∗ p , 3 ∗ p , . . . , p k − 1 ∗ p p, 2*p, 3* p, ...,p ^{k - 1} ∗p p,2p,3p,...,pk1p,把他们去除即可.

由唯一分解定理可得: n = p 1 a 1 p 2 a 2 p 3 a 3 . . . p k a k n = p_1 ^{a_1} p_2 ^{a_2}p_3 ^{a_3}...p_k ^{a_k} n=p1a1p2a2p3a3...pkak
φ ( n ) = φ ( p 1 a 1 ) φ ( p 2 a 2 ) φ ( p 3 a 3 ) . . . φ ( p k a k ) \varphi (n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\varphi(p_3^{a_3})...\varphi(p_k^{a_k}) φ(n)=φ(p1a1)φ(p2a2)φ(p3a3)...φ(pkak)

根据上述 φ ( p k ) = p k − p k − 1 \varphi (p^k) = p ^k - p ^{k - 1} φ(pk)=pkpk1可得:
              φ ( p ) = p k ( 1 − 1 p k \ \ \ \ \ \ \ \ \ \ \ \ \ \varphi (p) = p^k(1 - \frac{1}{p^k}              φ(p)=pk(1pk1)

φ ( n ) = φ ( p 1 a 1 ) φ ( p 2 a 2 ) φ ( p 3 a 3 ) . . . φ ( p k a k ) \varphi (n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})\varphi(p_3^{a_3})...\varphi(p_k^{a_k}) φ(n)=φ(p1a1)φ(p2a2)φ(p3a3)...φ(pkak)可化为
     φ ( n ) = p 1 a 1 ( 1 − 1 p 1 ) p 2 a 2 ( 1 − 1 p 2 ) p 3 a 3 ( 1 − 1 p 3 ) . . . p k a k ( 1 − 1 p k ) \ \ \ \ \varphi (n) = p_1 ^{a_1}(1 - \frac {1} {p_1}) p_2 ^{a_2}(1 - \frac {1} {p_2})p_3 ^{a_3}(1 - \frac {1} {p_3})...p_k ^{a_k}(1 - \frac {1} {p_k})     φ(n)=p1a1(1p11)p2a2(1p21)p3a3(1p31)...pkak(1pk1)
            = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) ( 1 − 1 p 3 ) . . . ( 1 − 1 p k ) \ \ \ \ \ \ \ \ \ \ \ = n (1 - \frac {1} {p_1})(1 - \frac {1} {p_2})(1 - \frac {1} {p_3})...(1 - \frac {1} {p_k})            =n(1p11)(1p21)(1p31)...(1pk1)

欧拉函数的积性证明.

条件是m与n互质
可以得到 ϕ ( m n ) = ϕ ( m ) ∗ ϕ ( n ) \phi(mn) = \phi(m) \ast \phi(n) ϕ(mn)=ϕ(m)ϕ(n)
证明:
m = p 1 a 1 p 2 a 2 . . . p k a k m = p_1^{a_1}p_2^{a_2}...p_k^{a_k} m=p1a1p2a2...pkak
ϕ ( m ) = m ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \phi (m) = m(1- \frac {1}{p_1})(1- \frac {1}{p_2})...(1- \frac {1}{p_k}) ϕ(m)=m(1p11)(1p21)...(1pk1)
n = p 1 ′ a 1 ′ p 2 ′ a 2 ′ . . . p k ′ a k ′ n = p_1'^{a_1'}p_2'^{a_2'}...p_k'^{a_k'} n=p1a1p2a2...pkak
ϕ ( n ) = n ( 1 − 1 p 1 ′ ) ( 1 − 1 p 2 ′ ) . . . ( 1 − 1 p k ′ ) \phi(n) = n(1- \frac {1}{p_1'})(1- \frac {1}{p_2'})...(1- \frac {1}{p_k'}) ϕ(n)=n(1p11)(1p21)...(1pk1)
∵ m 与 n 互 质 \because m与n互质 mn
∴ p 1 , p 2 . . . p k 与 p 1 ′ p 2 ′ . . . p k ′ \therefore p_1,p_2...p_k与p_1'p_2'...p_k' p1,p2...pkp1p2...pk两两互不相同
∴ ϕ ( m n ) = m n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) ( 1 − 1 p 1 ′ ) ( 1 − 1 p 2 ′ ) . . . ( 1 − 1 p k ′ ) \therefore \phi(mn) = mn(1- \frac {1}{p_1})(1- \frac {1}{p_2})...(1- \frac {1}{p_k})(1- \frac {1}{p_1'})(1- \frac {1}{p_2'})...(1- \frac {1}{p_k'}) ϕ(mn)=mn(1p11)(1p21)...(1pk1)(1p11)(1p21)...(1pk1)
∴ ϕ ( m n ) = ϕ ( m ) ∗ ϕ ( n ) \therefore \phi(mn) = \phi(m) \ast \phi(n) ϕ(mn)=ϕ(m)ϕ(n)

欧拉定理:

当a 与 p互质的时候则有 a φ ( p ) ≡ 1   ( m o d   p ) a^{\varphi(p)} \equiv 1 \ (mod \ p) aφ(p)1 (mod p)
设A= { x 1 , x 2 , x 3 . . . x ϕ ( n ) } \{x_1, x_2,x_3...x_{\phi(n)}\} {x1,x2,x3...xϕ(n)}为1—n中与n互质的数的集合.
则他们模n两两不相同,且余数与n互质
下面我们来证明B= { a x 1 , a x 2 , a x 3 . . . a x ϕ ( n ) } \{ax_1, ax_2,ax_3...ax_{\phi(n)}\} {ax1,ax2,ax3...axϕ(n)}也有这个性质
mod n 两两互不相同 (反证法):
假设 i ! = j i != j i!=j, x i , x j ∈ B x_i, x_j \in B xi,xjB那么就有 a x i ≡ a x j ( m o d   n ) ax_i \equiv ax_j (mod \ n) axiaxj(mod n)
那么就有 a x I − a x J ≡ 0 ( m o d   n ) ax_I - ax_J \equiv 0 (mod \ n) axIaxJ0(mod n)
因为 x i − x J x_i - x_J xixJ 与n互质,所以不会有这样的解,得证。
余数都与 n n n互质:因为 a a a n n n互质, x i x_i xi n n n互质,
所以 a x i ax_i axi也与 n n n互质, a x i ax_i axi n n n后也与 n n n互质。
∏ i = 1 φ ( n ) a x i ≡ ∏ i = 1 φ ( n ) x i ( m o d   n ) \displaystyle \prod_{i = 1}^{\varphi(n)}ax_i \equiv \prod_{i=1}^{\varphi(n)}x_i (mod \ n) i=1φ(n)axii=1φ(n)xi(mod n)
a φ ( n ) ∏ i = 1 φ ( n ) x i ≡ ∏ i = 1 φ ( n ) x i ( m o d   n ) \displaystyle a^{\varphi(n)} \prod_{i = 1}^{\varphi(n)}x_i \equiv \prod_{i=1}^{\varphi(n)}x_i (mod \ n) aφ(n)i=1φ(n)xii=1φ(n)xi(mod n)
∴ a φ ( n ) ≡ 0 ( m o d   n ) \therefore a^{\varphi(n)} \equiv 0 (mod \ n) aφ(n)0(mod n)
特别的,当n为质数的时候 φ ( n ) = n − 1 \varphi(n) = n - 1 φ(n)=n1
那么式子就变成了 a n − 1 ≡ 0 ( m o d   n ) a^{n-1} \equiv 0 (mod \ n) an10(mod n)
这就是费马小定理,可以用来求逆元.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值