数论知识整理


看了好多人的博客都不太全,励志做出最全的数论知识
持续更新中…

整除:

定义 : 如果 a a a p p p 的倍数 ,则 a a a p p p 整除 ,记作 p ∣ a p\mid a pa
性质 :
b ∣ a b\mid a ba , c ∣ a c\mid a ca, b ⊥ c b\perp c bc b c ∣ a bc\mid a bca
a ∣ b a \mid b ab, b ∣ a b\mid a ba, 则: ∣ a ∣ = ∣ b ∣ \mid a\mid = \mid b \mid a=b
a ∣ b a\mid b ab, c ∈ Z c \in Z cZ, 则: a ∣ b c a\mid bc abc
a ∣ b a\mid b ab, m ∈ Z m\in Z mZ , 且 m ≠ 0 m \not= 0 m=0, 则 : m a ∣ m b ma \mid mb mamb
a ∣ b a\mid b ab, a ∣ c a\mid c ac ,则对于任意 x , y ∈ Z x,y\in Z x,yZ,均有 a ∣ x b + y c a\mid xb+yc axb+yc

计数原理

加法原理

一件事情,完成它有 n n n类方式,第一类方式有 M 1 M_1 M1种方法,第二类方式有 M 2 M_2 M2种方法,……,第 n n n类方式有 M n M_n Mn种方法,
那么完成这件事情共有 M 1 + M 2 + … … + M n M_1+M_2+……+M_n M1+M2++Mn种方法。

乘法原理

做一件事,完成它需要分成n个步骤,做第一步有 m 1 m_1 m1种不同的方法,做第二步有 m 2 m_2 m2种不同的方法,……,做第 n n n步有 m n m_n mn种不同的方法。
那么完成这件事共有 N = m 1 × m 2 × m 3 × … × m n N=m_1×m_2×m_3×…×m_n N=m1×m2×m3××mn 种不同的方法。

约数

gcd与exgcd
唯一分解定理、约数个数定理与约数和定理

同余方程

同余方程的性质:

1.自反性: 若 a ≡ a ( m o d   m ) 若a \equiv a (mod \ m) aa(mod m)
2.对称性: 若 a ≡ b ( m o d   m ) , 则 b ≡ a ( m o d   m ) 若a \equiv b (mod \ m), 则b \equiv a (mod \ m) ab(mod m),ba(mod m)
3.传递性: 若 a ≡ b ( m o d   m ) , b ≡ c ( m o d   m ) , 则 a ≡ c ( m o d   m ) 若a \equiv b (mod \ m), b \equiv c (mod \ m), 则a \equiv c (mod \ m) ab(mod m),bc(mod m),ac(mod m)
4.同加性: 若 a ≡ b ( m o d   m ) , 则 a + c ≡ b + c ( m o d   m ) 若a \equiv b (mod \ m),则a + c\equiv b+c (mod \ m) ab(mod m),a+cb+c(mod m)
5.同乘性: 若 a ≡ b ( m o d   m ) , 则 若 a ∗ c ≡ b ∗ c ( m o d   m ) 若a \equiv b (mod \ m),则若a \ast c \equiv b \ast c (mod \ m) ab(mod m),acbc(mod m)
若 a ≡ b ( m o d   m ) , c ≡ d ( m o d   m ) , 则 a ∗ c ≡ b ∗ d ( m o d   m ) 若a \equiv b (mod \ m), c \equiv d (mod \ m), 则a \ast c\equiv b \ast d (mod \ m) ab(mod m),cd(mod m),acbd(mod m)
6.同幂性: 若 a ≡ b ( m o d   m ) , 则 a n ≡ b n ( m o d   m ) 若a \equiv b (mod \ m), 则a^n \equiv b^n (mod \ m) ab(mod m),anbn(mod m)
7.推论1: a ∗ b   m o d   k = ( a   m o d   k ) ∗ ( b   m o d   k ) m o d   k a \ast b \ mod \ k = (a \ mod \ k) \ast (b \ mod \ k) mod \ k ab mod k=(a mod k)(b mod k)mod k

欧拉定理与欧拉函数
各种定理的证明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值