看了好多人的博客都不太全,励志做出最全的数论知识
持续更新中…
整除:
定义 : 如果
a
a
a 是
p
p
p 的倍数 ,则
a
a
a 被
p
p
p 整除 ,记作
p
∣
a
p\mid a
p∣a
性质 :
若
b
∣
a
b\mid a
b∣a ,
c
∣
a
c\mid a
c∣a,
b
⊥
c
b\perp c
b⊥c 则
b
c
∣
a
bc\mid a
bc∣a
若
a
∣
b
a \mid b
a∣b,
b
∣
a
b\mid a
b∣a, 则:
∣
a
∣
=
∣
b
∣
\mid a\mid = \mid b \mid
∣a∣=∣b∣
若
a
∣
b
a\mid b
a∣b,
c
∈
Z
c \in Z
c∈Z, 则:
a
∣
b
c
a\mid bc
a∣bc
若
a
∣
b
a\mid b
a∣b,
m
∈
Z
m\in Z
m∈Z , 且
m
≠
0
m \not= 0
m=0, 则 :
m
a
∣
m
b
ma \mid mb
ma∣mb
若
a
∣
b
a\mid b
a∣b,
a
∣
c
a\mid c
a∣c ,则对于任意
x
,
y
∈
Z
x,y\in Z
x,y∈Z,均有
a
∣
x
b
+
y
c
a\mid xb+yc
a∣xb+yc
计数原理
加法原理
做一件事情,完成它有
n
n
n类方式,第一类方式有
M
1
M_1
M1种方法,第二类方式有
M
2
M_2
M2种方法,……,第
n
n
n类方式有
M
n
M_n
Mn种方法,
那么完成这件事情共有
M
1
+
M
2
+
…
…
+
M
n
M_1+M_2+……+M_n
M1+M2+……+Mn种方法。
乘法原理
做一件事,完成它需要分成n个步骤,做第一步有
m
1
m_1
m1种不同的方法,做第二步有
m
2
m_2
m2种不同的方法,……,做第
n
n
n步有
m
n
m_n
mn种不同的方法。
那么完成这件事共有
N
=
m
1
×
m
2
×
m
3
×
…
×
m
n
N=m_1×m_2×m_3×…×m_n
N=m1×m2×m3×…×mn 种不同的方法。
约数
gcd与exgcd
唯一分解定理、约数个数定理与约数和定理
同余方程
同余方程的性质:
1.自反性:
若
a
≡
a
(
m
o
d
m
)
若a \equiv a (mod \ m)
若a≡a(mod m)
2.对称性:
若
a
≡
b
(
m
o
d
m
)
,
则
b
≡
a
(
m
o
d
m
)
若a \equiv b (mod \ m), 则b \equiv a (mod \ m)
若a≡b(mod m),则b≡a(mod m)
3.传递性:
若
a
≡
b
(
m
o
d
m
)
,
b
≡
c
(
m
o
d
m
)
,
则
a
≡
c
(
m
o
d
m
)
若a \equiv b (mod \ m), b \equiv c (mod \ m), 则a \equiv c (mod \ m)
若a≡b(mod m),b≡c(mod m),则a≡c(mod m)
4.同加性:
若
a
≡
b
(
m
o
d
m
)
,
则
a
+
c
≡
b
+
c
(
m
o
d
m
)
若a \equiv b (mod \ m),则a + c\equiv b+c (mod \ m)
若a≡b(mod m),则a+c≡b+c(mod m)
5.同乘性:
若
a
≡
b
(
m
o
d
m
)
,
则
若
a
∗
c
≡
b
∗
c
(
m
o
d
m
)
若a \equiv b (mod \ m),则若a \ast c \equiv b \ast c (mod \ m)
若a≡b(mod m),则若a∗c≡b∗c(mod m)
若
a
≡
b
(
m
o
d
m
)
,
c
≡
d
(
m
o
d
m
)
,
则
a
∗
c
≡
b
∗
d
(
m
o
d
m
)
若a \equiv b (mod \ m), c \equiv d (mod \ m), 则a \ast c\equiv b \ast d (mod \ m)
若a≡b(mod m),c≡d(mod m),则a∗c≡b∗d(mod m)
6.同幂性:
若
a
≡
b
(
m
o
d
m
)
,
则
a
n
≡
b
n
(
m
o
d
m
)
若a \equiv b (mod \ m), 则a^n \equiv b^n (mod \ m)
若a≡b(mod m),则an≡bn(mod m)
7.推论1:
a
∗
b
m
o
d
k
=
(
a
m
o
d
k
)
∗
(
b
m
o
d
k
)
m
o
d
k
a \ast b \ mod \ k = (a \ mod \ k) \ast (b \ mod \ k) mod \ k
a∗b mod k=(a mod k)∗(b mod k)mod k