蒙特卡洛之布丰投针(python实现)

本文介绍了布丰投针问题及其与圆周率的关系,通过Python模拟实验,展示了如何利用随机投针法计算π的值。借助numpy库生成随机数据,实现自动化模拟,从而避免手动实验,提高了效率。
摘要由CSDN通过智能技术生成

Buffon实验介绍

法国数学家Buffon提出一个问题:设我们有一个以平行且等距木纹铺成的地板(如图),随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。
经Buffon证明此概率与圆周率pi相关,因此Buffon提出的一种计算圆周率的方法——随机投针法。这就是蒲丰投针问题(又译“布丰投针问题”)。
图片来源于百度百科在这里插入图片描述

实验步骤

  1. 取一张白纸,在上面画上许多条间距为a的平行线。
  2. 取一根长度为l(l≤a) 的针,随机地向画有平行直线的纸上掷n 次,观察针与直线相交的次数,记为m。
  3. 计算针与直线相交的概率。

实验结果

法国数学家布丰提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为a的平行线,将一根长度为l(l≤a)的针任意掷在这个平面上,求此针与平行线中任一条相交的概率。”
布丰本人证明了,这个概率是:
P = 2 L π a P = \frac { 2 L } { \pi a } <

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值