从Matrix67博客的一个数学问题说起
http://www.matrix67.com/blog/archives/2494
M大牛语录——
“数学学习真正悲哀的就是,记住了某个神奇而伟大的定理,看懂了其最严密的推导过程,但却始终没能直观地去理解它。虽然严密的推导是必要的,直观理解往往是不准确的,但如果能悟出一个让定理一瞬间变得很显然的解释,这不但是一件很酷的事,而且对定理更透彻的理解和更熟练的运用也很有帮助。”
关于这个问题,M牛举了例子:圆的面积与周长的关系。(正方形面积与周长的关系)。
记得我和一位友人,讨论一个网络游戏中升级武器的概率问题的时候,发生了不少摩擦。我研究了一天给出了一个复杂(但是正确)的公式,但结果令他很不屑,因为他认为肯定有一种直觉的、很简单的算法存在其中。当时我认为他这么想是因为他数学基础不好= =,事实证明我错了。——有关这个问题,应该再写一篇文章记录一下。
复述一下Buffon投针的问题。
Buffon投针实验是说,假设地板上画着一组间距为1的平行线。把一根长度为1的针扔到地上,则这根针与地板上的平行线相交的概率为2/pi。这个答案有些蹊跷,一是因为出现了pi,二是因为它实在是太简洁了。
注意到,把一根长度为pi的铁丝弯成一个直径为1的圆,则把它扔到地上之后,它与这组平行线总有两个交点。这就是说,pi的c倍就等于2,即c等于2/pi
这个问题说完了,注意红字部分——期望值的一个最引人注目的性质就是,E(A+B)=E(A)+E(B),不管A和B是不是独立的。我对此性质十分费解,到现在也没有完全搞明白如何理解或者证明这个性质。先贴一个网上的证明看看:
两个随机变量之和的数学期望等于这两个随机变量数学期望的和。(截图容易挂,用文本简单描述一下好了。)
证:E(X+Y) = Sig(i) Sig(j){ (Ai + Bj)·Pij } = Sig(i){Ai·Pij} + Sig(j){Bj·Pij}
= Sig(i){Ai·Pi} + Sig(j){Bj·Pj}
= EX + EY
我数学不好,上次竟然没看懂证明过程。这次大致明白了,就是期望的定义里只有简单的乘法和加法,只要利用分配率和交换率倒一下,就会得到想要的结果。中间只有双重Sigma有点不熟悉。
先贴着,慢慢理解着。基础知识忒重要了。
直觉上期望的这个性质很有用 = =