很郁闷为什么网上的布丰投针都写的这么复杂,而且很多都是复读机直接copy别人,其实这是个很精巧、有趣的实验,所以打算自己写一个布丰投针的介绍
故事背景
你在教室里写数学题,突然有个人,抱着一大盒针走过来,然后把针撒到地上,然后很淡定地点点头说,“嗯,我知道π等于多少了”。
是不是觉得很神奇?!这跟π什么关系?!!!
没错,这个人就是布丰。
实验过程
这个实验也很简单,两段距离为D的平行线、一根长为L的针(L≤D)
投针实验就是把这根针扔到两段平行线之间,然后统计针碰到平行线的次数,例如图中的两根针,红色针就是碰到,黑色针就是没碰到
哪这和π是怎么扯上关系的呢?是从”针碰到平行线“的数学定义中推导得到的。我们先想办法定义针的位置,取针的中点向最近的平行线做垂线,定义该垂线为 X X X,该垂线与针的夹角为 θ θ θ
因为针是在两段平行线之间,故
X ∈ [ 0 , D / 2 ] X\in[0, D/2] X∈[0,D/2]
同时因为总能找到一个小于90°的角,故
θ ∈ [ 0 , π / 2 ] θ\in[0, π/2] θ∈[0,π/2]
X X X与 θ θ θ与平行线可以组成一个直角三角形,所以斜边的长度是 X / c o s θ X/cosθ X/cosθ
因此,只要
X / c o s θ < L / 2 X/cosθ < L/2 X/cosθ<L/2
即 X < ( L / 2 ) ∗ c o s θ 即X < (L/2)*cosθ 即X<(L/2)∗cosθ
的话(其实取≤也可以,影响不大),就说明针碰到了平行线,否则就说明没碰到,下图分别为”没碰到和“碰到”的情况
下面我们来表示出“针碰到平行线的概率”,即
P { X < L 2 c o s θ } P\{X<\frac{L}{2}cosθ\} P{
X<2Lcosθ}
求概率,本质就是比值,而因为 X X X与 θ θ