图论之单源最短路

图论之单源最短路

// 0x3f 0x3f3f3f3f 的区别?
memset 按字节赋值,所以memset 0x3f 就等价与赋值为0x3f3f3f3f,

1. Dijkstra

int g[N][N];    //为稠密阵所以用邻接矩阵存储
int dist[N];    //用于记录每一个点距离第一个点的距离
bool st[N];     //用于记录该点的最短距离是否已经确定

int Dijkstra()
{
    memset(dist, 0x3f,sizeof dist);     //初始化距离  0x3f代表无限大

    dist[1]=0;  //第一个点到自身的距离为0

    for(int i=0;i<n;i++)      //有n个点所以要进行n次 迭代
    {
        int t=-1;       //t存储当前访问的点

        for(int j=1;j<=n;j++)   //这里的j代表的是从1号点开始
            if(!st[j]&&(t==-1||dist[t]>dist[j]))     
                t=j;

        st[t]=true;   

        for(int j=1;j<=n;j++)           //依次更新每个点所到相邻的点路径值
            dist[j]=min(dist[j],dist[t]+g[t][j]);
    }

    if(dist[n]==0x3f3f3f3f) return -1;  //如果第n个点路径为无穷大即不存在最低路径
    return dist[n];
}

堆优化版的dijkstra是对朴素版dijkstra进行了优化,在朴素版dijkstra中时间复杂度最高的寻找距离最短的点O(n^2)可以使用小根堆优化。

  1. 一号点的距离初始化为零,其他点初始化成无穷大。
  2. 将一号点放入堆中。
  3. 不断循环,直到堆空。每一次循环中执行的操作为:
    弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同,并标记该点的最短路径已经确定)。
    用该点更新临界点的距离,若更新成功就加入到堆中。

2. 堆优化版的Dijkstra

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    // 这里heap中为什么要存pair呢,首先小根堆是根据距离来排的,所以有一个变量要是距离,其次在从堆中拿出来的时    
    // 候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。
    heap.push({ 0, 1 }); // 这个顺序不能倒,pair排序时是先根据first,再根据second,这里显然要根据距离排序
    while(heap.size())
    {
        PII k = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();
        int ver = k.second, distance = k.first;

        if(st[ver]) continue;
        st[ver] = true;

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i]; // i只是个下标,e中在存的是i这个下标对应的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({ dist[j], j });
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

3. Bellman-ford(有边数限制的最短路)

在这里插入图片描述
在这里插入图片描述

  • SPFA算法各方面优于该算法,但是在碰到限制了最短路径上边的长度时就只能用bellman_ford了,此时直接把n重循环改成k次循环即可
  • 如果边数限制为k,则外层循环为k,内层循环是枚举所有的边,对所有的边都进行一次松弛操作。如果没有边数限制的话,外层循环n次,内层每次松弛所有边,执行完之后一定会找到起点到终点的最短路了。
  • 原题链接:https://www.acwing.com/problem/content/855/
    这个题解写的好:https://www.acwing.com/solution/content/17551/
//这道题有收藏题解,写的挺不错的
#include<cstring>
#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;

const int N=510,M=10010;

int n,m,k;
int dist[N],backup[N];

struct Edge{
    int a,b,w;
}edges[M];

int bellman_ford()
{
    dist[1]=0;
    // 如果k是n的话,就不需要backup数组了
    for(int i=0;i<k;i++)
    {
        //为什么需要back[a]数组
//  为了避免串联情况,有可能1号点把2号点的距离更新了. 如果不用backup数组的话, 2号点会在本次循环中把3号点也更新了, 那就不对了. 计网中不是讲过吗
        memcpy(backup,dist,sizeof dist);
        
        for(int j=0;j<m;j++)//枚举所有的边,三角不等式!!
        {
            int a=edges[j].a,b=edges[j].b,w=edges[j].w;
            dist[b]=min(dist[b],backup[a]+w);
        }
        
        
    }
    // cout<<dist[n]<<endl;
    // if(dist[n]>0x3f3f3f3f/2) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    memset(dist,0x3f3f3f3f,sizeof dist);
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        edges[i]={a,b,w};
    }
    
    int t=bellman_ford();
    
    // if(t==-1) puts("impossible");有道理,万一返回的t就是-1呢,那岂不是会输出impossible
    //应该直接返回dist[n],在外边判断
    if(dist[n]>0x3f3f3f3f/2) puts("impossible");
    else printf("%d\n",t);
    return 0;
}

在这里插入图片描述

4. SPFA

看这个题解:https://www.acwing.com/solution/content/9306/

Bellman_ford算法可以存在负权回路,是因为其循环的次数是有限制的因此最终不会发生死循环;但是SPFA算法不可以,由于用了队列来存储,只要发生了更新就会不断的入队,因此假如有负权回路请你不要用SPFA否则会死循环。

由于SPFA算法是由Bellman_ford算法优化而来,在最坏的情况下时间复杂度和它一样即时间复杂度为 O(nm)O(nm) ,假如题目时间允许可以直接用SPFA算法去解Dijkstra算法的题目。(好像SPFA有点小小万能的感觉?)

1] Dijkstra算法中的st数组保存的是当前确定了到源点距离最小的点,且一旦确定了最小那么就不可逆了(不可标记为true后改变为false);SPFA算法中的st数组仅仅只是表示的当前发生过更新的点,且spfa中的st数组可逆(可以在标记为true之后又标记为false)。顺带一提的是BFS中的st数组记录的是当前已经被遍历过的点。

2] Dijkstra算法里使用的是优先队列保存的是当前未确定最小距离的点,目的是快速的取出当前到源点距离最小的点;SPFA算法中使用的是队列(你也可以使用别的数据结构),目的只是记录一下当前发生过更新的点。

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;

const int N=1e5+10;

#define fi first
#define se second

typedef pair<int,int> PII;//到源点的距离,下标号

int h[N],e[N],w[N],ne[N],idx=0;
int dist[N];//各点到源点的距离
bool st[N];
int n,m;
void add(int a,int b,int c){
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}

int spfa(){
    queue<PII> q;
    memset(dist,0x3f,sizeof dist);
    dist[1]=0;
    q.push({0,1});
    st[1]=true;
    while(q.size()){
        PII p=q.front();
        q.pop();
        int t=p.se;
        st[t]=false;//从队列中取出来之后该节点st被标记为false,代表之后该节点如果发生更新可再次入队
        // 枚举所有相连的边。
        for(int i=h[t];i!=-1;i=ne[i]){
            int j=e[i];
            if(dist[j]>dist[t]+w[i]){
                dist[j]=dist[t]+w[i];
                if(!st[j]){//当前已经加入队列的结点,无需再次加入队列,即便发生了更新也只用更新数值即可,重复添加降低效率
                    st[j]=true;
                    q.push({dist[j],j});
                }
            }
        }
    }
    if(dist[n]==0x3f3f3f3f) return -1;
    else return dist[n];
}

int main(){
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    while(m--){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    int res=spfa();
    if(res==-1) puts("impossible");
    else printf("%d",res);

    return 0;
}

5. SPFA判断负环

题目链接:https://www.acwing.com/problem/content/854/
我的代码:https://www.acwing.com/problem/content/submission/code_detail/4350171/

//这道题也有收藏题解,利用抽屉原理,判断一下最短路径上是否有超过n-1
//条边,cnt[i]存i号点到源点的最短路上,边的数量。
//这道题让判断整个图中有无负环、上一题是求1到n的最短路,这道题也并不是让求从1开始的负环
//所以题解中有个思想很好,就是假设一个虚拟原点,初始把所有的点都加到队列中

/*
    多加一个0号顶点,到其他顶点的距离都是零,求0到其他顶点的最短路,如果0到i号顶点的最短路中超过了n-1个节点
    那么整个图中必定存在负环。那么本题中就必定存在负环,所以说开始把所有顶点都加入到队列中的操作,等于上述设虚拟原点
    的操作,上述虚拟原点的新图中,0到任意一个点有负环,就等于原来的图中一定存在负环,可以画个图理解一下
    
*/
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>

using namespace std;

const int N=100010;

int n,m;
int h[N],w[N],ne[N],e[N],idx;
int dist[N], cnt[N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool spfa()
{
    //这里的把dist数组初始化为正无穷的操作也就不用了
    //因为我们最后注意的是cnt数组,而不是dist,dist刚开始是0的话也无所依
    //图中存在负环的话,cnt必然会>=n,相当于所有距离都减去了正无穷,但是并不
    //影响最后cnt的判断
    
    //更牛逼的解释来了!
    //  观察这个更新操作,if(dist[j] > dist[t] + w[i]) ) 
    //如果存在负环,则一定会更新无穷次。cnt数组肯定会>=n的 !所以不初始化dist也没事!!
    queue<int> q;
    
    for(int i=1;i<=n;i++)
    {
        st[i]=true;
        q.push(i);
    }
    
    while(q.size())
    {
        int t=q.front();
        q.pop();
        
        st[t]=false;
        
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;
                
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}

int main()
{
    scanf("%d%d",&n,&m);
    memset(h,-1,sizeof h);
    
    while(m--)
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    
    if(spfa()) puts("Yes");
    else puts("No");
    return 0;
}

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值