最短路问题之单源最短路-Dijkstra算法

一个点(源点)到其余各个顶点的最短路径,叫做单源最短路经。

例如求下图中的1号顶点到2,3,4,5,6号顶点的最短路径。


使用二维数组e来存储顶点之间边的关系,初始值如下表。

e 1 2 3 4 5 6
1 0 1 12 inf inf inf
2 inf 0 9 3 inf inf
3 inf inf 0 inf 5 inf
4 inf inf 4 0 13 15
5 inf inf inf inf 0 4
6 inf inf inf inf inf 0
我们还需要用一个一维数组dis来存储1号点到其余各个顶点的初始路程。

dis数组:

1 2 3 4 5 6
0 1 12 inf inf inf
此时将dis数组中的值成为最短路程的“估计值”。


既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。

 通过是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当离1号顶点最近的是2号顶点。当选择了2号顶点后,dis[2]的值就从”估计值“变成了”确定值“,即1号顶点到2号顶点的最短路程就是当前dis[2]值(因为目前离1号顶点最近的是2号顶点,并且这个图所有的边都是正数,那么肯定不可能通过第三个顶点中转,使得1号顶点到2号顶点的路程进一步缩短了)。

既然选了2号顶点,接下来再来看2号顶点有哪些出边。有2->3和2->4这两条边。先讨论通过2->3这条边能否让1号顶点到3号顶点的路程变短,也就是说来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程;dis[2]+e[2][3]中dis[2]表示1号顶点到2号顶点的路程,e[2][3]表示2->3这条边。所以dis[2]+e[2][3]就表示从1号顶点先到2号顶点,在通过2->3这条边,到达3号顶点的路程。

我们发现dis[3] = 12, dis[2]+e[2][3] = 1+9 = 10, dis[3]>dis[2] + e[2][3],因此dis[3]要更新为10.这个过程有个专业术语叫做”松弛“,1号顶点到3号顶点的路程即dis[3],通过2->3这条边松弛成功。这便是Dijkstra算法的主要思想:通过”边“来松弛1号顶点到其余各个顶点的路程。

同理,通过2->4(e[2][4]),可以将dis[4]的值从inf松弛为4(dis[2]+e[2][4] = 4, dis[4] > dis[2] + e[2][4])

对2号顶点所有的出边进行了松弛,松弛完毕之后dis数组为:

  1 2 3 4 5 6
dis 0 1 10 4 inf inf
接下来,继续在剩下的3,4,5和6号顶点中,选出离1号,顶点最近的顶点。通过上面更新过的dis数组,当前离1号顶点最近的是4号顶点,此时,dis[4]的值已经从”估计值“变成了”确定值“。下面继续对4号顶点的所有出边(4->3,4->5,4->6)进行松弛操作,松弛之后的dis数组为:

  1 2 3 4 5 6
dis 0 1 8 4 17 19
继续在剩下的3,5,6,号顶点中,选出离1号顶点最近的顶点,这次选出3号顶点(3->5)进行松弛操作:


  1 2 3 4 5 6
dis 0 1 8 4 13 19
这次选出5号顶点,对5号所有的出边(5->6)进行松弛。松弛完毕之后dis数组为:

  1 2 3 4 5 6
dis 0 1 8 4 13 17
最后对6号顶点的所有出边进行松弛。因为6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从”估计值“变成了”确定值“。dis数组如下,这便是从1号顶点到其余各个顶点的最短路径:

  1 2 3 4 5 6
dis 0 1 8 4 13 17

算法的基本思想是:每次找到离源点(上面例子源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:

1.将所有的顶点分成两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们用一个book数组来记录哪些点再集合P中。book[i]为1则表示这个顶点在集合P中,如果book[i]为0则表示这个顶点在集合Q中。

2.设置源点s到自己的最短路径为0即dis[s]=0.若存在有源点能直接到达的顶点i,则把dis[i]设为e[s][i]。同时把所有其他顶点的最短路径设为inf。

3.在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。

4.重复第三步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。

完整的Dijkstra算法代码如下:

#include <stdio.h>
#define inf 0x3f3f3f3f
int dis[105];
int book[105];
int e[105][105];
int main() {
	int n, m; 
	int u, v, w;
	//读入n个顶点和m条边 
	scanf("%d %d", &n, &m);
	//初始化,顶点自身为0 
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= n; j++) {
			if(i == j) e[i][j] = 0;
			else e[i][j] = inf;
		}
	}
	//读入边,这里是单向边(根据题意定) 
	for(int i = 1; i <= m; i++) {
		scanf("%d %d %d", &u, &v, &w);
		e[u][v] = w;//
	}
	//这里是1号顶点到其余各个顶点的初始路程 
	for(int i = 1; i <= n; i++) {
		dis[i] = e[1][i];
	}
	//初始化book数组 
	for(int i = 1; i <= n; i++) book[i] = 0;
	book[1] = 1;
	//Dijkstra算法核心语句 
	for(int i = 1; i <= n; i++) {
		//找到离1号顶点最近的顶点 
		int mn = inf, p = -1;
		for(int j = 1; j <= n; j++) {
			if(!book[j] && mn > dis[j]) {
				p = j;
				mn = dis[j];
			}
			
		}
		if(p == -1) break;//表示没有边可以进行松弛,直接跳出循环。 
		book[p] = 1;
		for(int j = 1; j <= n; j++) {
			if(book[j]) continue;
			if(dis[j] > (dis[p] + e[p][j])) {
				dis[j] = dis[p]+e[p][j];
			}
		}
	}
	//输出最终结果 
	for(int i = 1; i <= n; i++) {
		printf("%d ", dis[i]);
	}
	return 0;
}

通过上面的代码可以发现,这个算法的时间复杂度是O(N^2)。也可以用堆优化达到O(MlogN),用邻接表代替邻接矩阵,使得整个时间复杂度优化到O(M+N)logN。Dijkstra一般解决稠密图(和顶点关系密切),但是无法解决负边权问题(就是边权值为负数)。如果有负边权最好是用Bellman-Ford算法了。

邻接表加优先队列的Dijkstra。

#include <queue>
#include <vector>
#include <stdio.h>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
const int maxn = 1e6+6;
int dis[maxn];
int U[maxn], V[maxn], W[maxn];
struct node{
    int id,dist;
    node(){}
    node(int Id,int Dist){
        id=Id;
        dist=Dist;
    }
    bool operator < (const node& a) const{
        if(dist==a.dist){
            return id<a.id;
        }
        return dist>a.dist;
    }
};

vector<node> v[maxn];

void init(int n) {
    for(int i=1;i<=n;i++) {
        dis[i]=inf;
        v[i].clear();
    }
}

void Dijkstra(){
	node pre, nex;
    dis[1] = 0;
    pre.id = 1;
    pre.dist = 0;
    priority_queue<node> que;
    while(!que.empty()) que.pop();
    que.push(pre);
    while(!que.empty()){
        pre = que.top();
        que.pop();
        for(int i = 0; i < v[pre.id].size(); i++){
            nex = v[pre.id][i];
            if(dis[nex.id] > pre.dist + nex.dist){
                dis[nex.id] = pre.dist + nex.dist;
                que.push(node(nex.id , dis[nex.id]));
            }
        }
    }
}

int main() {
    int n,m;
    scanf("%d %d",&n,&m);
    for(int i=1;i<=m;i++) {
        scanf("%d %d %d",&U[i],&V[i],&W[i]);
    }
    init(n);//初始化 
    for(int i = 1; i <= m; i++) {
    	v[U[i]].push_back(node(V[i], W[i]));
	}
    Dijkstra();
    for(int i = 1; i <= n; i++)
	printf("%d ", dis[i]);
    return 0;
}

以上内容参考《挑战程序设计竞赛》,《啊哈算法》。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值