【tenserflow】——数据类型以及常用属性

本文深入探讨TensorFlow中的核心概念——Tensor,涵盖其定义、创建方法、数据类型、属性及设备管理,包括如何在CPU与GPU间转换张量,以及与NumPy数据的互转技巧。同时,讲解了判断张量类型、维度的方法,并演示了不同类型数据间的转换过程。
摘要由CSDN通过智能技术生成

目录

 

一、什么是Tensor?

二、Tensorflow常见数据类型

三、Tensorflow常见属性device\cpu\gpu\ndim\shape\rank等

1、创建一个tensor

1)tf.constant()

2)tf.Variable()

2、判断一个变量是否为tensor张量

 3、生成不同设备(cpu,gpu)上的tensor

4、判断一个tensor工作的设备

5、cpu和gpu不同设备上tensor的转换

6、tensor载体上的数据和numpy库上的数据的相互转换

7、判断变量的数据类型

8、判断变量的维度

 9、tensor下不同数据类型之间进行转换


一、什么是Tensor?

Tensor实际上就是Tensorflow中的数据载体,可以囊括所有的数据类型,如标量、矩阵、向量等

专门为神经网络中深度学习设计的一个框架中的数据载体

二、Tensorflow常见数据类型

import tensorflow as tf

三、Tensorflow常见属性device\cpu\gpu\ndim\shape\rank等

1、创建一个tensor

具体可见:《【tensorflow】——创建tensor的方法

1)tf.constant()

a=tf.constant(数据)

2)tf.Variable()

这个是专门为神经网络的参数进行设置的一个数据类型,它含有两个属性,一个是name,一个是train able

a = tf.range(4)#[0,1,2,3]

b = tf.Variable(a,name = "变量名")

b.name

b.trainable#返回True,表示是可以训练的变量,系统会自动对该变量的梯度进行监督(watch)

 

2、判断一个变量是否为tensor张量

import tensorflow as tf

tf.is_tensor(变量名)

#是tensor返回True,否则返回False

 3、生成不同设备(cpu,gpu)上的tensor

import tensorflow as tf

#创建cpu设备上的tensor变量a
with tf.device("cpu"):
    a=tf.constant(1)
    
#创建gpu设备上的tensor变量a
with tf.device("gpu"):
    b=tf.constant(1.1)
    

4、判断一个tensor工作的设备

tf.device(变量名)

#返回的是一个字符串,含有当前tensor所工作的环境设备

5、cpu和gpu不同设备上tensor的转换

不同设备上的变量有些操作是不能进行的,如a,b的加法,就需要在同一个设备环境下,才能进行,否则会报错,这时候就需要使用到不同设备间tensor的转换了

#假设a是cpu上的tensor,b是gpu上的tensor

aa = a.gpu()#返回的是gpu上的tensor,当然不会影响原来的tensor a所在的设备环境

bb = b.cpu()#返回的是cpu上的tensor,当然不会影响原来的tensor b所在的设备环境

6、tensor载体上的数据和numpy库上的数据的相互转换

这是两个数据库,可以看成是数据载体,都可以生成不同类型的数据,但是要想数据间进行操作,必须转换成同一个载体下的数据才能进行操作

import tensorflow as tf

#tensor转换为numpy

变量名.numpy()

#如果tensor是一个标量scalar的话,也可以通过下面的方法进行转换为numpy

int(a)
float(a)


#numpy转换为tensor

tf.convert_to_tensor(变量名,dtype=tf.数据类型)

7、判断变量的数据类型

a.dtype,b.dtype,c.dtyp#返回三个变量的数据类型

(tf.float32,tf.bool,tf.string)#表示在tensor数据载体下的各种数据类型


#要是想验证某一个变量是否为具体的数据类型,可以通过以下方法

a.dtype == tf.float32

#返回布尔类型,是返回True,不是返回False

8、判断变量的维度

维度是指是标量还是向量还是矩阵抑或是更高维的数据

b.ndim#返回的是一个标量,一个值,等于维度

tf.rank(b)#返回的是一个含有变量b相关信息的tensor

 

9、tensor下不同数据类型之间进行转换

tf.cast(变量名,dtype=需要转换成的数据类型)

#例如

tf.cast(aa,dtype = float32/double/int32)

布尔型和整型的转化

 

以下是安装tensorflow-gpu的步骤: 1. 安装CUDA Toolkit和cuDNN库 TensorFlow GPU版本需要CUDA Toolkit和cuDNN库的支持。请根据您的系统环境下载适合的版本。推荐使用CUDA 10.0和cuDNN 7.4.2。下载链接如下: - CUDA Toolkit 10.0:https://developer.nvidia.com/cuda-10.0-download-archive - cuDNN 7.4.2:https://developer.nvidia.com/cudnn 安装CUDA Toolkit和cuDNN库时,请注意设置环境变量,以便TensorFlow能够找到它们。 2. 创建conda虚拟环境 您可以使用conda创建一个虚拟环境来安装和管理TensorFlow GPU版本以及其他软件包。打开终端并运行以下命令: ```bash conda create -n tensorflow-gpu python=3.7 ``` 这个命令将创建一个名为“tensorflow-gpu”的conda虚拟环境,其中Python的版本是3.7。 3. 激活conda虚拟环境 使用以下命令激活conda虚拟环境: ```bash conda activate tensorflow-gpu ``` 4. 安装TensorFlow GPU版本 通过以下命令安装TensorFlow GPU版本: ```bash pip install tensorflow-gpu==2.0.0 ``` 这个命令将安装TensorFlow 2.0.0 GPU版本。 5. 验证安装 要验证TensorFlow GPU是否正确安装,请使用以下Python代码: ```python import tensorflow as tf print(tf.test.is_gpu_available()) ``` 如果输出的结果为True,则表示TensorFlow GPU版本安装正确。 提示:安装TensorFlow GPU版本之前,请确保您的GPU支持CUDA。您可以在以下链接中查找支持CUDA的GPU:https://developer.nvidia.com/cuda-gpus
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值