- 转载请注明详细地址
- 本文简单介绍了图像常见几何特征的概念以及求解方法
- 本文介绍了Python和opencv求解几何特征的常用方法
目录
其他形状外接轮廓的方法可以参考:《OpenCV-Python——第17.3章:轮廓形状拟合(边界矩形,最小外接圆...)及性质》
1、cv2.connectedComponentsWithStats()
1、cv2.arcLength(contours[0],True)
2、得到矩形的角点坐标和长宽cv2.boundingRect()函数
3、求解最小外接矩形(cv2.minAreaRect()函数)
4、绘制最小外接矩形:cv2.boxPoints()函数和cv2.polylines()函数
一、获得轮廓
在进行轮廓几何特征的提取之前,首先要做的就是得到轮廓,得到轮廓常用的函数有:
cv2.findcontours()
contours, hierarchy = cv.findContours( image, mode, method[, contours[, hierarchy[, offset]]] )
参数1:源图像
参数2:轮廓的检索方式,这篇文章主要讲解这个参数
参数3:一般用 cv.CHAIN_APPROX_SIMPLE,就表示用尽可能少的像素点表示轮廓
contours:图像轮廓坐标,是一个列表
hierarchy:[Next, Previous, First Child, Parent],文中有详细解释
具体可见:《【图像处理】——Pyt