目录
利用tensorflow的Keras模块我们可以建立我们自己定义的卷积神经网络模型,但是一般不会触碰到学习率这个问题,一般默认的学习率都是0.001,有时候希望学习率小一点,需要调参,因此记录一下
1、直接获取现有模型的学习率
import tensorflow.keras as tfk
from tensorflow.keras import backend
# 获取学习率的数值
lr = backend.get_value(model.optimizer.lr)
# 修改当前模型的学习率
backend.set_value(model.optimizer.lr,new_lr_value)
2、打印显示学习率
def get_lr_metric(optimizer): # printing the value of the learning rate
def lr(y_true, y_pred):
return optimizer.lr
return lr
optimizer = Adam(lr=1e-4)
lr_metric = get_lr_metric(optimizer)
model.compile(optimizer = optimizer, loss = 'MSE', metrics = ['acc', lr_metric])
3、调整学习率
Keras提供两种学习率适应方法,调整学习率需要在model.fit或者model.fit_generator中的callbacks回调函数中实现。
1)1.LearningRateScheduler
keras.callbacks.LearningRateScheduler(schedule)
参数
- schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)
import keras.backend as K
from keras.callbacks import LearningRateScheduler
def scheduler(epoch):
# 每隔100个epoch,学习率减小为原来的1/10
if epoch % 100 == 0 and epoch != 0:
lr = K.get_value(model.optimizer.lr)
K.set_value(model.optimizer.lr, lr * 0.1)
print("lr changed to {}".format(lr * 0.1))
return K.get_value(model.optimizer.lr)
reduce_lr = LearningRateScheduler(scheduler)
model.fit(train_x, train_y, batch_size=32, epochs=300, callbacks=[reduce_lr])
2)ReduceLROnPlateau
当评价指标不在提升时,减少学习率 当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率
参数
- monitor:被监测的量
- factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
- patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
- mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
- epsilon:阈值,用来确定是否进入检测值的“平原区”
- cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
model.fit(train_x, train_y, batch_size=32, epochs=300, validation_split=0.1, callbacks=[reduce_lr])