【机器学习】——卷积神经网络(Keras)修改学习率(定值+自适应)

目录

1、直接获取现有模型的学习率

2、打印显示学习率

3、调整学习率

1)1.LearningRateScheduler

2)ReduceLROnPlateau


利用tensorflow的Keras模块我们可以建立我们自己定义的卷积神经网络模型,但是一般不会触碰到学习率这个问题,一般默认的学习率都是0.001,有时候希望学习率小一点,需要调参,因此记录一下

1、直接获取现有模型的学习率

import tensorflow.keras as tfk
from tensorflow.keras import backend

# 获取学习率的数值
lr = backend.get_value(model.optimizer.lr)

# 修改当前模型的学习率
backend.set_value(model.optimizer.lr,new_lr_value)

2、打印显示学习率

def get_lr_metric(optimizer):  # printing the value of the learning rate
    def lr(y_true, y_pred):
        return optimizer.lr
    return lr

optimizer = Adam(lr=1e-4)  
lr_metric = get_lr_metric(optimizer)

model.compile(optimizer = optimizer, loss = 'MSE',  metrics = ['acc', lr_metric])

3、调整学习率

Keras提供两种学习率适应方法,调整学习率需要在model.fit或者model.fit_generator中的callbacks回调函数中实现。

1)1.LearningRateScheduler

keras.callbacks.LearningRateScheduler(schedule)

参数

  • schedule:函数,该函数以epoch号为参数(从0算起的整数),返回一个新学习率(浮点数)
import keras.backend as K
from keras.callbacks import LearningRateScheduler
 
def scheduler(epoch):
    # 每隔100个epoch,学习率减小为原来的1/10
    if epoch % 100 == 0 and epoch != 0:
        lr = K.get_value(model.optimizer.lr)
        K.set_value(model.optimizer.lr, lr * 0.1)
        print("lr changed to {}".format(lr * 0.1))
    return K.get_value(model.optimizer.lr)
 
reduce_lr = LearningRateScheduler(scheduler)
model.fit(train_x, train_y, batch_size=32, epochs=300, callbacks=[reduce_lr])

2)ReduceLROnPlateau

当评价指标不在提升时,减少学习率 当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作

 

from keras.callbacks import ReduceLROnPlateau
reduce_lr = ReduceLROnPlateau(monitor='val_loss', patience=10, mode='auto')
model.fit(train_x, train_y, batch_size=32, epochs=300, validation_split=0.1, callbacks=[reduce_lr])



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值