【机器视觉】——平面测量实际尺寸(像素尺寸转物理尺寸)

本文介绍了三种在平面条件下将像素尺寸转换为物理尺寸的方法:比例尺法、三角法和相机标定。比例尺法通过计算像素距离与实际距离的比例实现测量;三角法则考虑两个方向的不同缩放比例,用于更精确的尺寸转换;而相机标定,尤其是双目标定,适用于更复杂的测量任务。各方法的实际应用中存在误差,需注意校准和计算精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

方法一:比例尺法

方法:二:三角法

方法三:相机标定


以下方法均在平面的前提下进行

方法一:比例尺法

在一张纸上绘制一个带刻度的直线,将纸张放在摄像头下,抓取任意两点的像素坐标,计算像素距离pd,再根据刻度读取实际距离ad,根据两者可以求出缩放比例,即地图上的比例尺

scale = ad / pd ,单位:mm/piexl

如图,一格表示1cm,AB=5cm,选择一段10cm的刻度,运行代码得到scale,后面只需要知道两点的坐标,即可通过公式求得得到实际尺寸

#!/usr/bin/env python
# -*- codin
### 使用Java实现机器视觉中的长度测量 #### 技术背景与原理 为了利用Java进行机器视觉中的长度测量,需要理解基本的工作原理和技术栈。通过OpenCV库可以在Java环境中处理图像数据,并应用几何学方法如相似三角形来估计实际尺寸。 对于基于图像的长度测量而言,核心在于建立物理世界坐标系下的已知尺度对象与其投影在二维平面上对应特征之间的关系[^1]。当拍摄角度固定时,可以通过预先校准获取相机参数以及设定标准参照物,在此基础上分析待测物体边缘轮廓或其他显著标记点的位置变化情况,进而推导出目标的真实大小或间距。 #### 实现方案概述 具体来说,要完成这项任务涉及以下几个方面: - **环境搭建**:确保安装了适合版本JDK,并配置好IDE(例如Eclipse/IntelliJ IDEA)。下载并导入官方发布的OpenCV Java包作为依赖项。 - **初始化设置**:编写程序加载所需的视频流或者静态图片文件;定义ROI(Region of Interest),即感兴趣区域用于限定后续操作范围;调用`Mat`类实例化矩阵容器保存读取的数据帧。 - **预处理阶段**:运用灰度变换、高斯模糊滤波等手段改善原始素材质量,减少噪声干扰影响最终精度。接着执行二值化换使前景主体更加突出明显以便于下一步提取边界线段信息。 - **特征识别过程**:借助Canny算子检测边缘像素集合形成闭合曲线结构表示实物外形轮廓。再者,可考虑引入霍夫直线变换寻找特定方向上的连续分布模式辅助定位端点座标位置。 - **计算逻辑部分**:依据前述提到的比例因子关联理论模型求解未知量——被摄体的实际宽度高度数值。此环节可能还会涉及到透视畸变矫正补偿措施以提高准确性。 下面给出一段简化版代码片段展示上述思路的具体编码实践方式: ```java import org.opencv.core.*; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; public class LengthMeasurement { static { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); } public static void main(String[] args) { Mat srcImage = Imgcodecs.imread("path/to/image.jpg"); // Convert to grayscale and apply Gaussian blur Mat grayImage = new Mat(); Imgproc.cvtColor(srcImage, grayImage, Imgproc.COLOR_BGR2GRAY); Imgproc.GaussianBlur(grayImage, grayImage, new Size(7, 7), 0); // Edge detection using Canny algorithm Mat edges = new Mat(); Imgproc.Canny(grayImage, edges, 50, 150); // Find contours from the edge-detected image List<MatOfPoint> contours = new ArrayList<>(); Mat hierarchy = new Mat(); Imgproc.findContours(edges, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE); // Assuming we have a reference object with known width (in pixels or real-world units) double refWidthInPixels = ...; // Set this value based on your calibration // Calculate distance between camera and object here... // This would involve more complex calculations depending on setup specifics. // For demonstration purposes only: System.out.println("Reference Width in Pixels: " + refWidthInPixels); } } ``` 这段示例展示了如何使用OpenCV API来进行基础的图像处理和初步的对象轮廓发现工作。然而请注意这只是一个起点,完整的解决方案还需要进一步细化各个步骤间的衔接机制并且加入必要的错误检查语句保障稳定性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值