欧式数据和非欧式数据(待完善)

一.欧氏空间和非欧氏空间

  • 欧氏空间: 欧氏空间是我们熟悉的三维几何空间,也可以推广到更高维度。在欧氏空间中,我们使用欧几里得距离(即直线距离)来度量两点之间的距离。例如,我们通常熟悉的平面几何和立体几何就是欧氏空间的例子。

    举例:假设有一张平面纸上的两个点A和B,我们可以用尺子直接测量点A到点B的距离,这就是欧氏空间的应用。

  • 非欧氏空间: 非欧氏空间是一类不满足欧几里得几何公理的几何空间。在非欧氏空间中,点之间的距离和角度可能会有不同的定义,导致其几何性质与欧氏空间不同。非欧氏几何学由19世纪数学家发展而来,是对传统欧氏几何的一种拓展。

    举例:一个常见的非欧氏空间是球面上的几何。在球面上,两点之间的最短距离不再是直线,而是沿着球面上的大圆弧(类似于地球上两点之间的最短距离是沿着经线和纬线行走)。在球面上的角度也遵循特定的非欧氏几何规则。

总结:欧氏空间是我们通常所接触到的几何空间,其中点之间的距离是直线距离。而非欧氏空间则是一类拓展了欧氏空间概念的几何空间,它的度量和几何性质可能会有所不同,例如球面几何。

二.欧式数据和非欧式数据

"欧式数据"和"非欧数据"这两个术语并不是普遍使用的标准术语,因此在不同上下文中可能有不同的含义。以下是在机器学习和数据分析领域中可能涉及到的一种解释:

  • 欧式数据(Euclidean data): 在机器学习中,欧式数据通常指的是数据样本在欧式空间中的表示。欧式空间是一个常见的几何空间,其中的数据表示为向量,且满足欧氏几何的度量。在欧式空间中,我们可以使用欧几里得距离来度量数据样本之间的相似性

    举例:在一个简单的二维平面上,每个数据样本可以由两个实数构成,比如(x, y)坐标点,这样的数据就是欧式数据。在欧式空间中,我们可以计算这些点之间的距离,比如欧几里得距离:√((x2 - x1)^2 + (y2 - y1)^2)。

  • 非欧数据(Non-Euclidean data): 非欧数据则是指在非欧式空间中表示的数据样本。非欧式空间是一类不满足欧几里得几何的几何空间,点之间的距离和度量可能具有不同的定义。在非欧式空间中,数据样本的表示可能不再是向量。

    举例:在机器学习中,某些问题可能涉及到图数据、文本数据或时间序列数据等,这些数据样本可能不容易用向量表示,并且在处理这些数据时需要考虑非欧式空间的度量和几何性质。

总结:在机器学习和数据分析中,"欧式数据"通常指的是在欧式空间中用向量表示的数据,而"非欧数据"指的是在非欧式空间中表示的数据,比如图数据、文本数据等。这些术语用于强调数据样本的表示和处理可能涉及的不同几何结构和度量方法。请注意,这些术语的具体含义可能因上下文而异。

下面内容参考自:数据域(欧几里得数据与非欧几里得数据) - 知乎 (zhihu.com)

随着网络时代的发展,生活中产生的数据量越来越多,但数据大体分为两类欧几里得数据、非欧几里得数据。如下图为两类常见的数据:

图1 数据类型

上图所示数据主要分为两类:欧几里得数据与非欧几里得数据。

欧几里得数据

它是一类具有很好的平移不变性的数据。对于这类数据以其中一个像素为节点,其邻居节点的数量相同。所以可以很好的定义一个全局共享的卷积核来提取图像中相同的结构。常见这类数据有图像、文本、语言。

1. 图像中的平移不变性:即不管图像中的目标被移动到图片的哪个位置,得到的结果(标签)应该相同的。
2. 卷积被定义为不同位置的特征检测器。

图像:图像是一种2D的网格类型数据,通常用矩阵进行存储。

文本:文本是一种1D的网格类型数据,通常可以用向量进行存储。对于文本,我们通常做法是去停用词、以及高频词(DIFT),最后嵌入到一个一维的向量空间。

非欧几里得数据

它是一类不具有平移不变性的数据。这类数据以其中的一个为节点,其邻居节点的数量可能不同。常见这类数据有知识图谱、社交网络、化学分子结构等等。

这类数据由于其不具备平移不变性,不能利用卷积核去提取相同的结构信息,所以卷积神经网络对于这类数据无能为力。所以衍生出了处理这类数据的网络,即图神经网络

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 欧式聚类是一种用于分割实验数据的常用方法,可以帮助我们发现数据中的潜在模式和结构。在这个实验中,我们将使用欧式聚类算法来分割名为"trees"的数据集。 "trees"数据集包含了关于树木的一些特征信息,比如树的高度、胸径和体积等。我们的目标是根据这些特征将树木分成不同的聚类。 首先,我们需要对数据进行预处理。这可能包括数据清理、缺失值处理和特征选择等步骤,以保证数据的准确性和一致性。 然后,我们可以使用欧式聚类算法进行分割。该算法通过计算数据点之间的欧氏距离来确定数据的相似性。基于这个相似性,我们将数据分成不同的簇。具体来说,我们可以使用K均值算法来实现欧式聚类。 在实验中,我们需要选择适当的聚类数,这表示我们希望将数据分成多少个簇。我们可以使用一些评估指标,如轮廓系数或手肘法,来帮助我们确定最佳的聚类数。 最后,我们可以根据分割结果进行进一步分析和解释。例如,我们可以对每个聚类进行描述统计,了解每个簇中树木特征的平均值和方差。此外,我们还可以将聚类结果可视化,以便更好地理解数据的结构和模式。 通过欧式聚类分割实验数据"trees",我们可以从中获取有关树木特征的有用信息,这不仅可以帮助我们对现有数据进行更深入的了解,还可以为相关领域的研究和应用提供支持。 ### 回答2: 欧式聚类分割是一种常用的数据分析方法,它通过计算样本之间的相似度来将数据划分为不同的类别。对于实验数据"trees",我们可以使用欧式聚类方法来对其进行分割。 首先,我们需要明确实验数据"trees"的特征。可能包括树的高度、树的直径、树的种类等等。然后,我们可以根据这些特征计算每个样本之间的相似度。 欧式聚类的核心思想是将相似度较高的样本聚类在一起,相似度较低的样本分别放置在不同的类别中。具体步骤如下: 1. 初始化:随机选择k个样本作为初始中心点。 2. 计算相似度:对于每个样本,计算其与每个中心点之间的距离,常用的距离度量方法是欧式距离。 3. 分配归类:将每个样本分配给距离最近的中心点所属的类别。 4. 更新中心点:对于每个类别,重新计算其内部样本的平均值,并将其作为新的中心点。 5. 重复步骤2-4,直到达到收敛条件(例如中心点不再发生变化)。 通过以上步骤,我们可以将实验数据"trees"分割成不同的聚类。每个聚类代表具有相似特征的树的集合。这样的分割结果可以帮助我们理解实验数据中的树的分布情况,进而进行更加深入的分析和研究。 需要注意的是,分割结果的质量取决于选择的特征和聚类算法的参数设置。因此,在实际应用中,我们需要根据具体情况进行适当的调整和优化,以获得更好的分割效果。 ### 回答3: 欧式聚类是一种常用的数据分析方法,可以对实验数据进行分割和分类。在这里,我们使用欧式聚类方法对实验数据trees进行聚类分析。 这个实验数据集包含了树木的相关信息,例如树木的高度、周长和体积等。我们首先将这些数据进行预处理,包括数据清洗和归一化处理。然后,我们通过计算树木间的欧式距离来度量它们之间的相似性。 接下来,我们使用聚类算法将树木分成不同的类别。在欧式聚类方法中,有很多聚类算法可供选择,如K-means、凝聚聚类等。我们可以根据实际情况选择适合的聚类算法。 在进行聚类之后,我们可以观察到聚类结果的各个簇的特征。例如,某一簇可能包含高度较大的树木,另一簇可能包含周长较小的树木等。通过对聚类结果进行分析,我们可以获取对树木特征的更深入的认识。 最后,我们可以可视化聚类结果,如使用散点图或热力图展示树木的分布情况。通过可视化,我们可以更直观地了解不同树木类别之间的关系和区别。 总之,欧式聚类是一种对实验数据进行分割和分类的有效方法。通过对树木数据集trees的欧式聚类分析,我们可以获得对树木特征的深入认识,并通过可视化展示聚类结果,更直观地了解不同树木类别之间的关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值