最小生成树--------------局域网

某个局域网内有 nn

台计算机和 kk

条 双向 网线,计算机的编号是 1∼n1∼n

。由于搭建局域网时工作人员的疏忽,现在局域网内的连接形成了回路,我们知道如果局域网形成回路那么数据将不停的在回路内传输,造成网络卡的现象。注意:对于某一个连接,虽然它是双向的,但我们不将其当做回路。本题中所描述的回路至少要包含两条不同的连接。两台计算机之间最多只会存在一条连接。不存在一条连接,它所连接的两端是同一台计算机。因为连接计算机的网线本身不同,所以有一些连线不是很畅通,我们用 f(i,j)f(i,j)

表示 i,ji,j

之间连接的畅通程度,f(i,j)f(i,j)

值越小表示 i,ji,j

之间连接越通畅。现在我们需要解决回路问题,我们将除去一些连线,使得网络中没有回路且不影响连通性(即如果之前某两个点是连通的,去完之后也必须是连通的),并且被除去网线的 Σf(i,j)Σf(i,j)

最大,请求出这个最大值。输入格式第一行两个正整数 n,kn,k

。接下来的 kk

行每行三个正整数 i,j,mi,j,m

表示 i,ji,j

两台计算机之间有网线联通,通畅程度为 mm

。输出格式一个正整数,表示被除去网线的 Σf(i,j)Σf(i,j)

的最大值。数据范围1≤n≤1001≤n≤100

0≤k≤2000≤k≤200

1≤f(i,j)≤10001≤f(i,j)≤1000

输入样例:5 5
1 2 8
1 3 1
1 5 3
2 4 5
3 4 2
输出样例:8

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110, M = 210;
struct Edge{
 int a, b, w;
 bool operator <(const Edge &t)const{
      return w < t.w;
 }
}e[M];
int p[N];
int n, m;
int find(int x){
 if (p[x] != x)    p[x] = find(p[x]);
 return p[x];
}
int main(){
 cin >> n >> m;
 for (int i = 1; i <= n; i ++)   p[i] = i;
  for (int i = 0; i < m; i ++){
  int a, b, c;
  cin >> a >> b >> c;
  e[i] = {a, b, c};
 }
  sort(e, e + m);
  int res = 0;
 for (int i = 0; i < m; i ++){
  int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
  if (a != b)  p[a] = b;
  else         res += w;
 }
  cout << res << endl;
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值