某个局域网内有 nn
台计算机和 kk
条 双向 网线,计算机的编号是 1∼n1∼n
。由于搭建局域网时工作人员的疏忽,现在局域网内的连接形成了回路,我们知道如果局域网形成回路那么数据将不停的在回路内传输,造成网络卡的现象。注意:对于某一个连接,虽然它是双向的,但我们不将其当做回路。本题中所描述的回路至少要包含两条不同的连接。两台计算机之间最多只会存在一条连接。不存在一条连接,它所连接的两端是同一台计算机。因为连接计算机的网线本身不同,所以有一些连线不是很畅通,我们用 f(i,j)f(i,j)
表示 i,ji,j
之间连接的畅通程度,f(i,j)f(i,j)
值越小表示 i,ji,j
之间连接越通畅。现在我们需要解决回路问题,我们将除去一些连线,使得网络中没有回路且不影响连通性(即如果之前某两个点是连通的,去完之后也必须是连通的),并且被除去网线的 Σf(i,j)Σf(i,j)
最大,请求出这个最大值。输入格式第一行两个正整数 n,kn,k
。接下来的 kk
行每行三个正整数 i,j,mi,j,m
表示 i,ji,j
两台计算机之间有网线联通,通畅程度为 mm
。输出格式一个正整数,表示被除去网线的 Σf(i,j)Σf(i,j)
的最大值。数据范围1≤n≤1001≤n≤100
0≤k≤2000≤k≤200
1≤f(i,j)≤10001≤f(i,j)≤1000
输入样例:5 5
1 2 8
1 3 1
1 5 3
2 4 5
3 4 2
输出样例:8
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110, M = 210;
struct Edge{
int a, b, w;
bool operator <(const Edge &t)const{
return w < t.w;
}
}e[M];
int p[N];
int n, m;
int find(int x){
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(){
cin >> n >> m;
for (int i = 1; i <= n; i ++) p[i] = i;
for (int i = 0; i < m; i ++){
int a, b, c;
cin >> a >> b >> c;
e[i] = {a, b, c};
}
sort(e, e + m);
int res = 0;
for (int i = 0; i < m; i ++){
int a = find(e[i].a), b = find(e[i].b), w = e[i].w;
if (a != b) p[a] = b;
else res += w;
}
cout << res << endl;
return 0;
}