YOLOX在win10+cpu下运行

1 篇文章 0 订阅

1、先装PyCharm和Anaconda,搭建隔离环境

win10+pycharm+anaconda开发环境搭建_机器视觉全栈er的博客-CSDN博客这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Marhttps://blog.csdn.net/qq_42322191/article/details/118880962?spm=1001.2014.3001.5501

2、主要流程

基本上看这个文章就够了

YOLOX系列文章(二):win10+cpu运行YOLOX_机器视觉全栈er的博客-CSDN博客_windows运行yolox超详细win10+cpu运行YOLOX教程1.本次任务2.开发环境搭建合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入1.本次任务搭建YOLOX开发环境(对原始开发环境做稍许变动,使其适合win10cpu版本)修剪代码,使其在win1https://blog.csdn.net/qq_42322191/article/details/119008430

主要是安装一些所需的包,为了方便我放一下安装包的代码(我是用Anaconda Prompt装的,注意环境要换成刚才创建的隔离环境,conda activate 环境名)

pytorch安装:

pip install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple

torch torchvision Pillow安装:

pip install torch torchvision Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

opencv_python安装:

pip install opencv_python -i https://pypi.tuna.tsinghua.edu.cn/simple

loguru安装:

pip install loguru -i https://pypi.tuna.tsinghua.edu.cn/simple

scikit-image安装:

pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple

tqdm安装:

pip install tqdm -i https://pypi.tuna.tsinghua.edu.cn/simple

thop安装:

pip install thop -i https://pypi.tuna.tsinghua.edu.cn/simple

tabulate安装:

pip install tabulate -i https://pypi.tuna.tsinghua.edu.cn/simple

matplotlib安装:

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

pycocotools安装(很可能报错,解决方法看步骤3):

pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install git+https://gitee.com/jiangjiajun/philferriere-cocoapi.git#subdirectory=PythonAPI

3、pycocotools安装报错解决方案

两个方法是一样的,二选一就行,实测可用

win10下安装pycocotools_CinzWS的博客-CSDN博客_win10安装pycocotools最近在训练网络的时候发现需要安装pycocotools。但是在安装的过程中发现pycocotools是在linux环境下运行才不爆粗。于是在网上下载了pycocotools-windows。发现还是不行,搜索了许多教程仍然不能解决。于是自己发现了一个简单暴力的方法。1、首先在网上下载pycocotools-windows。pip install pycocotools-windows2、找到下载所在在目录。我自己的放在了自己创建创建环境yolo5下的Lib/site-packages。然后直接暴力将https://blog.csdn.net/qq_37619128/article/details/123276447

windows10下安装pycocotools(亲测有效)_奶茶不加冰的博客-CSDN博客_pycocotools-windows不来花里胡哨的,直接本地安装1.打开清华源pycocotools的链接:https://pypi.tuna.tsinghua.edu.cn/simple/pycocotools-windows/2.找到对应Python的版本pycocotools(Python3.8选择最后一个cp38-win-amd64,同理py37的选择cp37_win_amd64)3.下载好文件后pycocotools_windows-2.0.0.2-cp38-cp38-win_amd64.whl4.运行下面代码:(https://blog.csdn.net/weixin_44312422/article/details/121931442

4、其他参考

百度安全验证https://baijiahao.baidu.com/s?id=1714914574762375202&wfr=spider&for=pc

镜像链接:

清华:https://pypi.tuna.tsinghua.edu.cn/simple

要在仅配备CPU的情况下运行YOLOX模型,你需要将模型部署到支持CPU推理的框架,如TensorFlow Lite(TF-Lite)或PyTorch的ONNX兼容版本。以下是基本步骤: 1. **转换模型**: 首先,从原始的YOLOX权重文件转换成适用于CPU的模型格式。对于YOLOX,这通常意味着将训练好的模型权重转存为ONNX或TF-Lite格式。 - 使用`torch.onnx.export` (PyTorch) 或 `tf.saved_model.save` (TensorFlow) 将PyTorch模型转换为ONNX。 - 使用`onnx-tensorrt` (ONNX-TensorRT) 或 `tensorflowjs_converter` (TensorFlow.js) 转换为TF-Lite。 2. **优化模型**: 对于较大的模型,可能会进行一些优化以提高在CPU上的性能。例如,量化、剪枝或蒸馏等技术可以减小模型大小并提升速度。 3. **选择适当的库**: PyTorch有一个叫做`torch2trt`的工具,用于将ONNX模型转换为TF-Lite格式,并且有专门针对CPU的优化选项。类似地,TensorFlow提供了一个名为`tflite-optimize`的命令行工具。 4. **加载和推理**: 在Python中,你可以使用相应库(如`pytorch2trt` for PyTorch或`tflite.Interpreter` for TF-Lite)加载模型,然后通过API来进行实时的图像或视频检测。 ```python # 示例(假设已转换为TF-Lite) import tflite_runtime.interpreter as tflite interpreter = tflite.Interpreter(model_path="yolox_cpu.tflite") interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() image = ... # 加载待检测的图片 interpreter.set_tensor(input_details[0]['index'], image) interpreter.invoke() predictions = interpreter.get_tensor(output_details[0]['index']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值