单源最短路径——迪杰斯特拉算法代码实现

主要思想:

迪杰斯特拉算法思想:其整体思想就是不断的找距离起始点最近的点。
       我们需要两个数组,一个用来记录每个点是否已经被访问过,另一个则是记录起始点到各个点的距离,用于判断并选择距离最近的点
整个算法其实就是两个步骤:
       第一步:选择距离最近的点,并访问它
       第二步:更新其他没有被访问过的节点与起始点的距离
       重复这两个步骤,直到所有点被访问完。  

#include <stdio.h>
#include <stdbool.h>
#define INF 9999  // 表示无穷大
/*


*/
// 定义节点数的最大值
#define MAX_SIZE 100

// 计算数组大小
#define SIZE(arr) ((sizeof(arr))/(sizeof(arr[0])))

// Dijkstra算法函数
void Dijkstra(int graph[MAX_SIZE][MAX_SIZE], int n, int start) {
    int dist[MAX_SIZE];   // 保存从起始节点到其他节点的最短路径
    bool visited[MAX_SIZE];  // 记录节点是否已访问

    // 初始化
    for (int i = 0; i < n; i++) {
        dist[i] = INF;  // 将所有距离初始化为无穷大
        visited[i] = false;  // 将所有节点标记为未访问
    }

    dist[start] = 0;  // 起始节点到自身的距离为0

    // 计算最短路径
    for (int count = 0; count < n - 1; count++) {
        int minDist = INF;
        int u;

        // 选择距离起始节点最近的未访问节点
        for (int v = 0; v < n; v++) {
            if (visited[v] == false && dist[v] <= minDist) {
                minDist = dist[v];
                u = v;
            }
        }

        visited[u] = true;  // 标记节点为已访问

        // 更新距离
        for (int v = 0; v < n; v++) {
        	//首先这个节点肯定是没有被访问过,然后u到v必须要存在路径,最后就是距离的比较,
			//看经过了u节点到达v节点的距离长度是否是小于当前保存的最小距离 
            if (!visited[v] && graph[u][v] && dist[u] + graph[u][v] < dist[v]) {
                dist[v] = dist[u] + graph[u][v];
            }
        }
    }

    // 输出最短路径
    printf("节点\t距离\n");
    for (int i = 0; i < n; i++) {
        printf("%d\t%d\n", i, dist[i]);
    }
}

int main() {
    int graph[MAX_SIZE][MAX_SIZE] = {
        {0, 5, 2, 0},
        {0, 0, 0, 3},
        {0, 0, 0, 2},
        {0, 0, 0, 0}
    };
    int n = SIZE(graph);
    int start = 0; // 起始节点

    Dijkstra(graph, n, start);
	
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是浮夸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值