李沐深度学习笔记05线性代数

A:

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

out:

(tensor([[20., 22., 24., 26.],
         [28., 30., 32., 34.],
         [36., 38., 40., 42.],
         [44., 46., 48., 50.],
         [52., 54., 56., 58.]]),
 torch.Size([5, 4]))

A_sum_axis0 = A.sum(axis=1)
A_sum_axis0, A_sum_axis0.shape

out:

(tensor([[ 40.,  45.,  50.,  55.],
         [140., 145., 150., 155.]]),
 torch.Size([2, 4]))

A_sum_axis0 = A.sum(axis=2)
A_sum_axis0, A_sum_axis0.shape

out:

(tensor([[  6.,  22.,  38.,  54.,  70.],
         [ 86., 102., 118., 134., 150.]]),
 torch.Size([2, 5]))

A.sum(axis=[0, 1])  # SameasA.sum()

out:

tensor([180., 190., 200., 210.])

sum_A = A.sum(axis=1, keepdims=True) #保持维度方便使用广播
sum_A

torch.mv:矩阵-向量积,不支持广播

torch.mm:矩阵乘法

 样例:

好用的公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值