torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]]).shape
torch.Size([1, 3, 4])#一层3*4的矩阵tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]], [[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]])#这种就是2*3*4的有几个中括号就是几维
维度拼接:torch.cat函数在二维,三维数据中拼接时候 dim维度 理解_torch.cat 三维-CSDN博客
内存的原地操作
1.id变化的操作 Z = torch.zeros_like(Y) print('id(Z):', id(Z)) Z = X + Y print('id(Z):', id(Z))
2.id不变的操作 Z = torch.zeros_like(Y) print('id(Z):', id(Z)) Z【:】 = X + Y print('id(Z):', id(Z))
数据预处理
遇到的的问题及修改:TypeError: can only concatenate str (not "int") to str。是因为在inputs
中存在不同数据类型的列,而在执行inputs.fillna(inputs.mean())
时,Pandas 尝试将不同数据类型的列相加,导致出现了TypeError。
解决方法:
或:mean(numeric_only=1)
此处会默认输出true和false。需要在最后加一个类型限制。