李沐深度学习笔记04数据操作实现:

torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]]).shape

torch.Size([1, 3, 4])#一层3*4的矩阵
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]])#这种就是2*3*4的

有几个中括号就是几维

维度拼接:torch.cat函数在二维,三维数据中拼接时候 dim维度 理解_torch.cat 三维-CSDN博客

内存的原地操作

1.id变化的操作 Z = torch.zeros_like(Y) print('id(Z):', id(Z)) Z = X + Y print('id(Z):', id(Z))

2.id不变的操作 Z = torch.zeros_like(Y) print('id(Z):', id(Z)) Z【:】 = X + Y print('id(Z):', id(Z))

数据预处理

遇到的的问题及修改:TypeError: can only concatenate str (not "int") to str。是因为在inputs中存在不同数据类型的列,而在执行inputs.fillna(inputs.mean())时,Pandas 尝试将不同数据类型的列相加,导致出现了TypeError。

解决方法:

或:mean(numeric_only=1)

此处会默认输出true和false。需要在最后加一个类型限制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值