P3 矩阵乘法和逆【线性代数】

P3 矩阵乘法和逆

注:矩阵乘法干嘛用的,个人感觉从两个点触发、一个是把现有的算式表达为矩阵形式、还有就是矩阵变换,比如左乘一个矩阵对矩阵进行行变换、右乘一个矩阵对矩阵进行列变换。

矩阵乘法

注:像下面这种一个行向量 * 一个列向量 根据元素一一相乘然后求和的操作,在线性代数中有学术名称向量内积运算之称,而向量的模计算方式就是自内积然后开根号。

在这里插入图片描述

注:总之右乘一个矩阵就是利用这个矩阵的列向量的每个分量作为左边矩阵列向量线性组合的系数。换为左乘一个矩阵就是利用其每个行向量左右右边矩阵的行向量线性组合的系数然后将生成的行向量作为矩阵的每一个行向量。

分块乘法

在这里插入图片描述

注:关于分快必须分的块与块能够满足矩阵乘法的条件。

矩阵的逆

在这里插入图片描述

注:在上述A X = I 求 X 中其实就是将A进行列变换然后变换为I,但是有时候可能我们怎样进行变换都变换不为单位矩阵,那么也就还是X无解,也就是A为奇异矩阵。当然求逆矩阵时当然可以 XA=I来求解X,也就是说对A进行行变换得到单位矩阵I。XA=I=AX 则称X与A互为逆矩阵。

注:关于奇异矩阵的这些叫法在国外的文献以及书籍中我们可以经常见到、我们经历的教学中通常称为可逆矩阵或者不可逆矩阵。

AX=0 与A逆的关系 消元求逆

在这里插入图片描述

注:根据上面求逆的结果来看,Col1:[7 -2] Col2:[-3 1] 也就是说让原矩阵A 的Col1 * 7 + Col * -2 即可得到单位矩阵的第一列,单位矩阵第二列算法同理。

注:为什么要研究个逆矩阵呢?我们可以回顾线性方程组的矩阵表达形式 可以表达为 A X = B 的形式 ,如果A存在逆矩阵,那么求解X将会变得容易起来,在等式的两侧的左边乘A的逆矩阵即可,A * A逆 = I ,也就剩下 X = A逆 * B,然后进行矩阵乘法就可以轻松求解 X ,当B有变化时也可以轻松的进行问题的求解,大大提升效率,不然的话把线性方程组的右值进行改变没学过线性代数的话可能会傻傻的右进行消元回代过程。所以线性代数还是蛮有意思的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高万禄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值