量子密码基础

量子密码基础

信息论的介绍

传统信息

在计算机中,信息的计量单位为bit(比特),用1和0(binary number)来代表yes or no,也就是代表着系统的两种状态,如果系统具有m种不同的状态,则n表示我们需要用来表示或编码这种状态的比特数,m、n满足 2 n ≥ m 2^{n}\ge m 2nm,n为满足条件的最小整数。

信号中的信息内容

问题:如何量化信息,一条信息具有多少信息量

在计算机中,最基本的信息单元成为字节(Byte),一个字节是八个比特位的串, log ⁡ 2 256 = 8 \log_{2}{256} =8 log2256=8,表示一个字节可以表示256种不同的信息。

熵与香农信息熵

香农提出的理论更进一步揭示了我们如何量化我们到底从信号中获得了多少有效信息。如果一个信息说明的是一个高发生率的事件,我们获得的信息量就少,相反,如果信息说明的是一个低发生率的事件,我们就获得了庞大的信息量。

香农规定,信息量是以2为底,概率的对数,即 I = − log ⁡ 2 p I=-\log_{2}{p} I=log2p

设X为一个随机变量,它的取值为 x 1 , x 2 , x 3 . . . x n x_1,x_2,x_3...x_n x1,x2,x3...xn,取值的概率分别为 p 1 , p 2 , p 3 . . . p n p_1,p_2,p_3...p_n p1,p2,p3...pn,且满足 0 ≤ p i ≤ 1 0\le p_i\le 1 0pi1 ∑ i p i = 1 \sum_{i}^{} p_i=1 ipi=1,X的香农熵为

H ( X ) = − ∑ i p i log ⁡ 2 p i H(X)=-\sum_{i}^{}p_i\log_{2}{p_i} H(X)=ipilog2pi

若某个概率等于0,则规定log 0=0,我们用香农熵来表示一个信号的不确定性或随机性,如果我们很确定这条信息是什么,香农熵为0;不确定性越低,香农熵越高。概括为

Decrease uncertainty ⇒ \Rightarrow Increase information

Increase uncertainty ⇒ \Rightarrow Increase entropy

X对Y的相对熵

H ( X ∥ Y ) = ∑ p log ⁡ 2 p q = − H ( X ) − ∑ p log ⁡ 2 q H(X\parallel Y)=\sum p\log_{2}{\frac{p}{q}}=-H(X)-\sum p\log_{2}{q} H(XY)=plog2qp=H(X)plog2q

X对Y的条件熵

H ( X ∣ Y ) = − ∑ p ( x j ∣ y i ) log ⁡ 2 ( p ( x j ∣ y i ) ) H(X\mid Y)=-\sum p(x_j\mid y_i)\log_2({p(x_j\mid y_i)}) H(XY)=p(xjyi)log2(p(xjyi))

H ( X ∣ Y ) ≤ H ( X ) H(X\mid Y)\le H(X) H(XY)H(X)

总信息量

H ( X , Y ) = H ( Y ) + H ( X ∣ Y ) H(X,Y)=H(Y)+H(X \mid Y) H(X,Y)=H(Y)+H(XY)

当X,Y一点关系都没有时,H(X,Y)=H(X)+H(Y)

互信息

X和Y的不相同度

I ( X ∣ Y ) = H ( X ) − H ( X ∣ Y ) I(X\mid Y)=H(X)-H(X\mid Y) I(XY)=H(X)H(XY)

I ( X ∣ Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X\mid Y)=H(X)+H(Y)-H(X,Y) I(XY)=H(X)+H(Y)H(X,Y)

概率基础

期待值(expectation value)

⟨ j ⟩ = ∑ j = 1 ∞ j n j n = ∑ j = 1 ∞ j p j \left \langle j \right \rangle =\sum_{j=1}^{\infty}\frac{jn_j}{n} =\sum_{j=1}^{\infty}jp_j j=j=1njnj=j=1jpj

方差

⟨ ( △ j ) 2 ⟩ = ⟨ j 2 ⟩ − ⟨ j ⟩ 2 \left \langle (\bigtriangleup j)^2 \right \rangle =\left \langle j^2 \right \rangle -\left \langle j \right \rangle ^2 (j)2=j2j2

量子位和量子态(Qubits and Quantum States)

量子位

量子计算中信息的最小单位为量子位(qubit),是quantum bit的缩写,和bit一样,量子位也可以是处于两种状态之一,我们用 ∣ 0 ⟩ \left | 0 \right \rangle 0 and ∣ 1 ⟩ \left | 1 \right \rangle 1来表示这两种状态,称为状态(state)、向量(vector)或者右矢(ket)。

一个量子位可以是0态、1态或是叠加态,即0和1向量的线性组合,我们用 ∣ ψ ⟩ \left | \psi \right \rangle ψ来表示一个状态,叠加态写作

∣ ψ ⟩ = α ∣ 0 ⟩ + β ∣ 1 ⟩ \left | \psi \right \rangle=\alpha \left | 0 \right \rangle+\beta \left | 1 \right \rangle ψ=α0+β1

α \alpha α β \beta β是负数,即 z = x + i y z=x+iy z=x+iy i = − 1 i=\sqrt{-1} i=1 ,每次测量的时候它会是0或1的一个状态,测出来0或1的概率分别由 α \alpha α β \beta β来表示

∣ α ∣ 2 \left | \alpha \right |^2 α2:找到 ∣ ψ ⟩ \left | \psi \right \rangle ψ ∣ 0 ⟩ \left | 0 \right \rangle 0的概率

∣ β ∣ 2 \left | \beta \right |^2 β2:找到 ∣ ψ ⟩ \left | \psi \right \rangle ψ ∣ 1 ⟩ \left | 1 \right \rangle 1的概率

即满足条件 ∣ α ∣ 2 + ∣ β ∣ 2 = 1 \left | \alpha \right |^2+\left | \beta \right |^2=1 α2+β2=1

至于 ∣ α ∣ 2 \left | \alpha \right |^2 α2 ∣ β ∣ 2 \left | \beta \right |^2 β2的计算方法如下

∣ α ∣ 2 = ( α ) ( α ∗ ) \left | \alpha \right |^2=(\alpha)(\alpha^*) α2=(α)(α)

∣ β ∣ 2 \left | \beta \right |^2 β2的计算方法相同,其中, α ∗ \alpha^* α表示 α \alpha α的共轭。即对于复数 z z z来说,计算方法如下

∣ z ∣ 2 = ( x + i y ) ( x − i y ) = x 2 + y 2 ⇒ ∣ z ∣ = x 2 + y 2 \left | z \right |^2=(x+iy)(x-iy)=x^2+y^2\Rightarrow |z|=\sqrt{x^2+y^2} z2=(x+iy)(xiy)=x2+y2z=x2+y2

向量空间(vector space)

在量子计算发生的数学空间叫做向量空间,对于一个向量空间的任意两个向量发生的加法和标量乘法,产生的结果仍属于这个向量空间,例如对于V向量空间和u、v两个属于它的向量来说

w = u + v , w ∈ V w=u+v,w\in V w=u+v,wV

α u ∈ V \alpha u\in V αuV

同时,向量空间中的向量满足如下几个式子

( u + v ) + w = u + ( v + w ) (u+v)+w=u+(v+w) (u+v)+w=u+(v+w)

u + 0 = 0 + u = u u+0=0+u=u u+0=0+u=u

u + ( − u ) = ( − u ) + u = 0 u+(-u)=(-u)+u=0 u+(u)=(u)+u=0

u + v = v + u u+v=v+u u+v=v+u

向量的表示方法
∣ ψ ⟩ = ( α β ) \left | \psi \right \rangle=\begin{pmatrix}\alpha\\\beta\end{pmatrix} ψ=(αβ)

向量的线性组合(liner combinations of vectors)

向量空间由一组基向量表示,就说是这组基向量张成的空间。

∣ ψ ⟩ = ( α β ) = ( α 0 ) + ( 0 β ) = α ( 1 0 ) + β ( 0 1 ) \left | \psi \right \rangle =\begin{pmatrix}\alpha\\\beta\end{pmatrix}=\begin{pmatrix}\alpha\\0\end{pmatrix}+\begin{pmatrix}0\\\beta\end{pmatrix}=\alpha\begin{pmatrix}1\\0\end{pmatrix}+\beta\begin{pmatrix}0\\1\end{pmatrix} ψ=(αβ)=(α0)+(0β)=α(10)+β(01)

所以我们就可以定义01向量

∣ 0 ⟩ = ( 1 0 ) , ∣ 1 ⟩ = ( 0 1 ) \left | 0 \right \rangle=\begin{pmatrix}1\\0\end{pmatrix}, \left | 1 \right \rangle=\begin{pmatrix}0\\1\end{pmatrix} 0=(10),1=(01)

一组向量线性独立

α 1 ∣ v 1 ⟩ + α 2 ∣ v 2 ⟩ + ⋅ ⋅ ⋅ + α n ∣ v n ⟩ = 0 \alpha_1\left | v_1 \right \rangle+\alpha_2\left | v_2 \right \rangle+\cdot \cdot\cdot+\alpha_n\left | v_n \right \rangle=0 α1v1+α2v2++αnvn=0

α i \alpha_i αi不全为0

一个向量空间可以有多种不同的基向量

内积(inner product)

内积的结果是一个复数,如果两个向量内积为0,则说明他们有正交关系

⟨ u ∣ v ⟩ = 0 \left \langle u | v \right \rangle=0 uv=0

向量的模

∥ u ∥ = ⟨ u ∣ u ⟩ \left \| u \right \|=\sqrt{\left \langle u | u \right \rangle } u=uu

运算规则

⟨ u ∣ α v + β w ⟩ = α ⟨ u ∣ v ⟩ + β ⟨ u ∣ w ⟩ \left \langle u | \alpha v+\beta w \right \rangle=\alpha\left \langle u | v \right \rangle+\beta\left \langle u | w \right \rangle uαv+βw=αuv+βuw

⟨ α u + β v ∣ w ⟩ = α ∗ ⟨ u ∣ w ⟩ + β ∗ ⟨ v ∣ w ⟩ \left \langle \alpha u+\beta v | w \right \rangle =\alpha^*\left \langle u | w \right \rangle+\beta^*\left \langle v | w \right \rangle αu+βvw=αuw+βvw

( ∣ u ⟩ ) + = ⟨ u ∣ (\left | u \right \rangle)^+=\left \langle u \right | (u)+=u(对偶向量)

对偶向量计算方法

( α 1 α 2 . . . α n ) + = ( α 1 ∗ α 2 ∗ . . . α n ∗ ) \begin{pmatrix}\alpha_1\\\alpha_2\\.\\.\\.\\\alpha_n\end{pmatrix}^+=\begin{pmatrix}\alpha_1^*&\alpha_2^*& .& . & . &\alpha_n^*\end{pmatrix} α1α2...αn+=(α1α2...αn)

内积计算方法

⟨ a ∣ b ⟩ = ( a 1 ∗ a 2 ∗ . . . a n ∗ ) ( b 1 b 2 . . . b n ) = ∑ i = 1 n a i ∗ b i \left \langle a | b \right \rangle=\begin{pmatrix}a_1^*&a_2^*& .& . & . &a_n^*\end{pmatrix}\begin{pmatrix}b_1\\b_2\\.\\.\\.\\b_n\end{pmatrix}=\sum_{i=1}^{n}a_i^*b_i ab=(a1a2...an)b1b2...bn=i=1naibi

归一化

⟨ a ∣ a ⟩ = 1 \left \langle a | a \right \rangle=1 aa=1

施密特正交化

∣ w 1 ⟩ = ∣ v 1 ⟩ \left | w_1 \right \rangle =\left | v_1 \right \rangle w1=v1

∣ w 2 ⟩ = ∣ v 2 ⟩ − ⟨ w 1 ∣ v 2 ⟩ ⟨ w 1 ∣ w 1 ⟩ ∣ w 1 ⟩ \left | w_2 \right \rangle=\left | v_2 \right \rangle-\frac{\left \langle w_1 | v_2 \right \rangle }{\left \langle w_1 | w_1 \right \rangle }\left | w_1 \right \rangle w2=v2w1w1w1v2w1

∣ w n ⟩ = ∣ v n ⟩ − ⟨ w 1 ∣ v n ⟩ ⟨ w 1 ∣ w 1 ⟩ ∣ w 1 ⟩ − ⟨ w 2 ∣ v n ⟩ ⟨ w 2 ∣ w 2 ⟩ ∣ w 2 ⟩ − . . . − ⟨ w n − 1 ∣ v n ⟩ ⟨ w n − 1 ∣ w n − 1 ⟩ ∣ w n − 1 ⟩ \left | w_n \right \rangle=\left | v_n \right \rangle-\frac{\left \langle w_1 | v_n \right \rangle }{\left \langle w_1 | w_1 \right \rangle }\left | w_1 \right \rangle-\frac{\left \langle w_2 | v_n \right \rangle }{\left \langle w_2 | w_2 \right \rangle }\left | w_2 \right \rangle-...-\frac{\left \langle w_{n-1} | v_n \right \rangle }{\left \langle w_{n-1} | w_{n-1} \right \rangle }\left | w_{n-1} \right \rangle wn=vnw1w1w1vnw1w2w2w2vnw2...wn1wn1wn1vnwn1

柯西-施瓦兹不等式

∣ ⟨ ψ ∣ ϕ ⟩ ∣ 2 ≤ ⟨ ψ ∣ ψ ⟩ ⟨ ϕ ∣ ϕ ⟩ |\left \langle \psi|\phi \right \rangle|^2 \le \left \langle \psi|\psi \right \rangle \left \langle \phi|\phi \right \rangle ψϕ2ψψϕϕ

三角不等式

⟨ ψ + ϕ ∣ ψ + ϕ ⟩ ≤ ⟨ ψ ∣ ψ ⟩ + ⟨ ϕ ∣ ϕ ⟩ \sqrt{\left \langle \psi+\phi | \psi+\phi \right \rangle } \le \sqrt{\left \langle \psi | \psi \right \rangle }+\sqrt{\left \langle \phi | \phi \right \rangle } ψ+ϕψ+ϕ ψψ +ϕϕ

矩阵和算符

算符对左矢运算变成另一个左矢,对右矢运算变成另一个右矢,同属于一个向量空间

A ^ ∣ ψ ⟩ = ∣ ϕ ⟩ \hat{A}\left |\psi\right\rangle=\left |\phi\right \rangle A^ψ=ϕ

⟨ ψ ∣ A ^ = ⟨ ϕ ∣ \left \langle \psi \right |\hat{A}=\left \langle \phi \right| ψA^=ϕ

满足线性运算规则

A ^ ( α ∣ ψ 1 ⟩ + β ∣ ψ 2 ⟩ ) = α ( A ^ ∣ ψ 1 ⟩ ) + β ( A ^ ∣ ψ 2 ⟩ ) \hat{A}(\alpha\left|\psi_1\right\rangle+\beta\left|\psi_2\right\rangle)=\alpha(\hat{A}\left|\psi_1\right\rangle)+\beta(\hat{A}\left|\psi_2\right\rangle) A^(αψ1+βψ2)=α(A^ψ1)+β(A^ψ2)

单位算子

I ^ ∣ ψ ⟩ = ∣ ψ ⟩ \hat{I}\left|\psi\right\rangle=\left|\psi\right\rangle I^ψ=ψ

零算子

0 ^ ∣ ψ ⟩ = 0 \hat{0}\left|\psi\right\rangle=0 0^ψ=0

可观察量

量子系统种可以测量得到的值,例如坐标、动量、角动量

泡利算子

一些比较基本的算子,有四个
σ 0 σ 1 ( σ x , X ) σ 2 ( σ y , Y ) σ 3 ( σ z , Z ) \sigma_0 \sigma_1(\sigma_x,X)\sigma_2(\sigma_y,Y)\sigma_3(\sigma_z,Z) σ0σ1(σx,X)σ2(σy,Y)σ3(σz,Z)

运算规则

σ 0 ∣ 0 ⟩ = ∣ 0 ⟩ , σ 0 ∣ 1 ⟩ = ∣ 1 ⟩ \sigma_0\left|0\right\rangle=\left|0\right\rangle,\sigma_0\left|1\right\rangle=|1\rangle σ00=0,σ01=1

σ 1 ∣ 0 ⟩ = ∣ 1 ⟩ , σ 1 ∣ 1 ⟩ = ∣ 0 ⟩ \sigma_1|0\rangle=|1\rangle,\sigma_1|1\rangle=|0\rangle σ10=1,σ11=0

σ 2 ∣ 0 ⟩ = − i ∣ 1 ⟩ , σ ∣ 1 ⟩ = i ∣ 0 ⟩ \sigma_2|0\rangle=-i|1\rangle,\sigma|1\rangle=i|0\rangle σ20=i1,σ1=i0

σ 3 ∣ 0 ⟩ = ∣ 0 ⟩ , σ ∣ 1 ⟩ = − ∣ 1 ⟩ \sigma_3|0\rangle=|0\rangle,\sigma|1\rangle=-|1\rangle σ30=0,σ1=1

外积(outer products)

∣ ψ ⟩ ⟨ ϕ ∣ |\psi\rangle\langle\phi| ψϕ,结果是一个算子

封闭性关系

在n维向量空间中,每个向量都可以表示成基向量和复数的积之和

∣ ψ ⟩ = ∑ i = 1 n c i ∣ u i ⟩ |\psi\rangle=\sum^n_{i=1}c_i|u_i\rangle ψ=i=1nciui

这是基于 I ^ = ∣ 0 ⟩ ⟨ 0 ∣ + ∣ 1 ⟩ ⟨ 1 ∣ \hat{I}=|0\rangle\langle0|+|1\rangle\langle1| I^=00+11推出的结论

使用矩阵来表示算子

A ^ = I ^ A ^ I ^ = ( ∑ i ∣ u i ⟩ ⟨ u i ∣ ) A ^ ( ∑ i ∣ u j ⟩ ⟨ u j ∣ ) = ∑ i , j ⟨ u i ∣ A ^ ∣ u j ⟩ ∣ u i ⟩ ⟨ u j ∣ \hat{A}=\hat{I}\hat{A}\hat{I}=(\sum_i|u_i\rangle\langle u_i|)\hat{A}(\sum_i|u_j\rangle\langle u_j|)=\sum_{i,j}\langle u_i|\hat{A}|u_j \rangle|u_i\rangle\langle u_j| A^=I^A^I^=(iuiui)A^(iujuj)=i,juiA^ujuiuj

A i , j = ⟨ u i ∣ A ^ ∣ u j ⟩ A_{i,j}=\langle u_i|\hat{A}|u_j\rangle Ai,j=uiA^uj,表示算子矩阵第i行第j列的元素,如果选区的基向量不同,算子矩阵也不同,它们之间相互变换的方法称为一元变换

外积的向量表示

∣ ψ ⟩ ⟨ ϕ ∣ = ( a b ) ( c ∗ d ∗ ) = ( a c ∗ a d ∗ b c ∗ b d ∗ ) |\psi\rangle \langle\phi|=\begin{pmatrix}a\\b\end{pmatrix}\begin{pmatrix}c^*&d^*\end{pmatrix}=\begin{pmatrix}ac^*&ad^*\\bc^*&bd^*\end{pmatrix} ψϕ=(ab)(cd)=(acbcadbd)

运算不满足交换律

厄米伴随

A ^ + \hat{A}^+ A^+ A ^ \hat{A} A^的厄米伴随

⟨ a ∣ A ^ + ∣ b ⟩ = ⟨ b ∣ A ^ ∣ a ⟩ \langle a|\hat{A}^+|b\rangle=\langle b|\hat{A}|a\rangle aA^+b=bA^a

等式规则

( α A ^ ) + = α ∗ A ^ + (\alpha\hat{A})^+=\alpha^*\hat{A}^+ (αA^)+=αA^+

( ∣ ψ ⟩ ) + = ⟨ ψ ∣ (|\psi\rangle)^+=\langle\psi| (ψ)+=ψ

( ⟨ ψ ∣ ) + = ∣ ψ ⟩ (\langle\psi|)^+=|\psi\rangle (ψ)+=ψ

( A ^ B ^ ) + = B ^ + A ^ + (\hat{A}\hat{B})^+=\hat{B}^+\hat{A}^+ (A^B^)+=B^+A^+

( A ^ ∣ ψ ⟩ ) + = ⟨ ψ ∣ A ^ + (\hat{A}|\psi\rangle)^+=\langle\psi|\hat{A}^+ (A^ψ)+=ψA^+

( A ^ B ^ ∣ ψ ⟩ ) + = ⟨ ψ ∣ B ^ + A ^ + (\hat{A}\hat{B}|\psi\rangle)^+=\langle\psi|\hat{B}^+\hat{A}^+ (A^B^ψ)+=ψB^+A^+

i f A ^ = ∣ ψ ⟩ ⟨ ϕ ∣ t h e n A ^ + = ∣ ϕ ⟩ ⟨ ψ ∣ if \hat{A}=|\psi\rangle\langle\phi|then\hat{A}^+=|\phi\rangle\langle\psi| ifA^=ψϕthenA^+=ϕψ

( A ^ + B ^ + C ^ ) + = A ^ + + B ^ + + C ^ + (\hat{A}+\hat{B}+\hat{C})^+=\hat{A}^++\hat{B}^++\hat{C}^+ (A^+B^+C^)+=A^++B^++C^+

厄米算子(Hermitian Opeartor)

A ^ = A ^ + \hat{A}=\hat{A}^+ A^=A^+,则 A ^ \hat{A} A^为厄米算子

幺正算子(Unitary Operator)

U U + = U + U = I UU^+=U^+U=I UU+=U+U=I

泡利算子既是厄米算子又是幺正算子

正规算子(Normal Operator)

A A + = A + A AA^+=A^+A AA+=A+A

特征值和特征向量(Eigenvalues and Eigenvectors)

特征值 λ \lambda λ,特征向量A

A ∣ ψ ⟩ = λ ∣ ψ ⟩ A|\psi\rangle=\lambda|\psi\rangle Aψ=λψ

特征方程求特征值,进而求得特征向量

d e t ∣ A − λ I ∣ = 0 det|A-\lambda I|=0 detAλI=0

厄米算子的特征值是实数,厄米算子不同特征值对应的特征向量正交

幺正算子特征值是模为1的复数

谱分解定理

A = ∑ i = 1 n a i ∣ u i ⟩ ⟨ u i ∣ A=\sum^n_{i=1}a_i|u_i\rangle\langle u_i| A=i=1naiuiui

算子的迹

用矩阵表示的算符,迹即为对角线之和(左上到右下),用向量表示的算符为

T r ( A ) = ∑ i = 1 n ⟨ u i ∣ A ∣ u i ⟩ Tr(A)=\sum^n_{i=1}\langle u_i|A|u_i\rangle Tr(A)=i=1nuiAui

迹的相关概念

T r ( A B C ) = T r ( C A B ) = T r ( B C A ) Tr(ABC)=Tr(CAB)=Tr(BCA) Tr(ABC)=Tr(CAB)=Tr(BCA)

T r ( ∣ ϕ ⟩ ⟨ ψ ∣ ) = ⟨ ϕ ∣ ψ ⟩ Tr(|\phi\rangle\langle\psi|)=\langle\phi|\psi\rangle Tr(ϕψ)=ϕψ

T r ( A ∣ ψ ⟩ ⟨ ϕ ∣ ) = ⟨ ϕ ∣ A ∣ ψ ⟩ Tr(A|\psi\rangle\langle\phi|)=\langle\phi|A|\psi\rangle Tr(Aψϕ)=ϕAψ

不同基向量表示的算子矩阵迹是相同的

T r ( A ) = ∑ i = 1 n = λ i Tr(A)=\sum^n_{i=1}=\lambda_i Tr(A)=i=1n=λi

满足线性运算关系

算子期望值

⟨ A ⟩ = ⟨ ψ ∣ A ∣ ψ ⟩ \langle A\rangle=\langle\psi|A|\psi\rangle A=ψAψ

幺正变换

U = ( ⟨ v 1 ∣ u 1 ⟩ ⟨ v 1 ∣ u 2 ⟩ ⟨ v 2 ∣ u 1 ⟩ ⟨ v 2 ∣ u 2 ⟩ ) U=\begin{pmatrix}\langle v_1|u_1\rangle&\langle v_1|u_2\rangle\\\langle v_2 | u_1\rangle&\langle v_2 | u_2\rangle\end{pmatrix} U=(v1u1v2u1v1u2v2u2)

∣ ψ ′ ⟩ = U ∣ ψ ⟩ |\psi'\rangle=U|\psi\rangle ψ=Uψ

A ′ = U A U + A'=UAU^+ A=UAU+

投影算子(Projection Operator)

P = ∣ ψ ⟩ ⟨ ψ ∣ , P 2 = P P=|\psi\rangle\langle\psi|,P^2=P P=ψψ,P2=P

A = ∑ i = 1 n a i P i A=\sum^n_{i=1}a_iP_i A=i=1naiPi

∑ i P i = I \sum_i P_i=I iPi=I

正算子(Positive Operator)

⟨ ψ ∣ A ∣ ψ ⟩ ≥ 0 \langle\psi|A|\psi\rangle\ge0 ψAψ0

交换子(Commutator Algebra)

[ A , B ] = A B − B A [A,B]=AB-BA [A,B]=ABBA

[A,B]=0时,称AB对易

海森堡不确定性定理

不确定性 Δ A \Delta A ΔA

Δ A = ⟨ A 2 ⟩ − ⟨ A ⟩ 2 \Delta A=\sqrt{\langle A^2\rangle-\langle A\rangle^2} ΔA=A2A2

Δ A Δ B ≥ 1 2 ∣ ⟨ [ A , B ] ⟩ ∣ \Delta A\Delta B\ge\frac{1}{2}|\langle[A,B]\rangle| ΔAΔB21[A,B]

张量积(Tensor Product)

H 1 H_1 H1是一个 N 1 N_1 N1维希尔伯特空间, H 2 H_2 H2是一个 N 2 N_2 N2维希尔伯特空间,将这两个空间合成一个新的空间 H H H,写作 H = H 1 ⊗ H 2 H=H_1\otimes H_2 H=H1H2 H H H空间的维度为 N 1 N_1 N1* N 2 N_2 N2,写作 d i m ( H ) = N 1 N 2 dim(H)=N_1N_2 dim(H)=N1N2

状态表示

∣ ϕ ⟩ ∈ H 1 , ∣ χ ⟩ ∈ H 2 , ∣ ψ ⟩ ∈ H |\phi\rang\in H_1, |\chi\rang\in H_2,|\psi\rang\in H ϕH1,χH2,ψH,用如下方式表示张量积

∣ ψ ⟩ = ∣ ϕ ⟩ ⊗ ∣ χ ⟩ |\psi\rang=|\phi\rang\otimes|\chi\rang ψ=ϕχ

运算规则

∣ ϕ ⟩ ⊗ [ ∣ χ 1 ⟩ + ∣ χ 2 ⟩ ] = ∣ ϕ ⟩ ⊗ ∣ χ 1 ⟩ + ∣ ϕ ⟩ ⊗ ∣ χ 2 ⟩ |\phi\rang\otimes[|\chi_1\rang+|\chi_2\rang]=|\phi\rang\otimes|\chi_1\rang+|\phi\rang\otimes|\chi_2\rang ϕ[χ1+χ2]=ϕχ1+ϕχ2

[ ∣ ϕ 1 ⟩ + ∣ ϕ 2 ⟩ ] ⊗ ∣ χ ⟩ = ∣ ϕ 1 ⟩ ⊗ ∣ χ ⟩ + ∣ ϕ 2 ⟩ ⊗ ∣ χ ⟩ [|\phi_1\rang+|\phi_2\rang]\otimes|\chi\rang=|\phi_1\rang\otimes|\chi\rang+|\phi_2\rang\otimes|\chi\rang [ϕ1+ϕ2]χ=ϕ1χ+ϕ2χ

∣ ϕ ⟩ ⊗ ( α ∣ χ ⟩ ) = α ∣ ϕ ⟩ ⊗ ∣ χ ⟩ |\phi\rang\otimes(\alpha|\chi\rang)=\alpha|\phi\rang\otimes|\chi\rang ϕ(αχ)=αϕχ

∣ ϕ ⟩ ⊗ ∣ χ ⟩ = ∣ χ ⟩ ⊗ ∣ ϕ ⟩ |\phi\rang\otimes|\chi\rang=|\chi\rang\otimes|\phi\rang ϕχ=χϕ

内积计算

令 ∣ ψ 1 ⟩ = ∣ ϕ 1 ⟩ ⊗ ∣ χ 1 ⟩ ∣ ψ 2 ⟩ = ∣ ϕ 2 ⟩ ⊗ ∣ χ 2 ⟩ 令|\psi_1\rang=|\phi_1\rang\otimes|\chi_1\rang\\|\psi_2\rang=|\phi_2\rang\otimes|\chi_2\rang ψ1=ϕ1χ1ψ2=ϕ2χ2

⟨ ψ 1 ∣ ψ 2 ⟩ = ⟨ ϕ 1 ∣ ϕ 2 ⟩ ⟨ χ 1 ∣ χ 2 ⟩ \lang\psi_1|\psi_2\rang=\lang\phi_1|\phi_2\rang\lang\chi_1|\chi_2\rang ψ1ψ2=ϕ1ϕ2χ1χ2

用列向量表示

∣ ϕ ⟩ = ( a b ) a n d ∣ χ ⟩ = ( c d ) |\phi\rang=\begin{pmatrix} a\\b \end{pmatrix}and|\chi\rang=\begin{pmatrix}c\\d\end{pmatrix} ϕ=(ab)andχ=(cd)

张量积表示为

∣ ϕ ⟩ ⊗ ∣ χ ⟩ = ( a c a d b c c d ) |\phi\rang\otimes|\chi\rang=\begin{pmatrix}ac\\ad\\bc\\cd\end{pmatrix} ϕχ=acadbccd

算子

设A是作用在 ∣ ϕ ⟩ |\phi\rang ϕ上的算子,B是作用在 ∣ χ ⟩ |\chi\rang χ上的算子,则对应的作用在 ∣ ψ ⟩ |\psi\rang ψ上的算子表示为

( A ⊗ B ) ∣ ψ ⟩ = ( A ∣ ϕ ⟩ ) ⊗ ( B ∣ χ ⟩ ) (A\otimes B)|\psi\rang=(A|\phi\rang)\otimes(B|\chi\rang) (AB)ψ=(Aϕ)(Bχ)

矩阵表示

A = ( a 11 a 12 a 21 a 22 ) , B = ( b 11 b 12 b 21 b 22 ) A=\begin{pmatrix}a_{11}&a_{12}\\a_{21} &a_{22}\end{pmatrix},B=\begin{pmatrix}b_{11}&b_{12}\\b_{21} &b_{22}\end{pmatrix} A=(a11a21a12a22)B=(b11b21b12b22)

A ⊗ B = ( a 11 B a 12 B a 21 B a 22 B ) = ( a 11 b 11 a 11 b 12 a 12 b 11 a 12 b 12 a 11 b 21 a 11 b 22 a 12 b 21 a 12 b 22 a 21 b 11 a 21 b 21 a 22 b 11 a 22 b 12 a 21 b 21 a 21 b 22 a 22 b 21 a 22 b 22 ) A\otimes B=\begin{pmatrix}a_{11}B&a_{12}B\\a_{21}B &a_{22}B\end{pmatrix}=\begin{pmatrix} a_{11}b_{11}& a_{11}b_{12} & a_{12}b_{11} &a_{12}b_{12} \\ a_{11}b_{21}&a_{11}b_{22} & a_{12}b_{21} &a_{12}b_{22} \\ a_{21}b_{11}&a_{21}b_{21} & a_{22}b_{11} &a_{22}b_{12} \\ a_{21}b_{21}&a_{21}b_{22} & a_{22}b_{21} &a_{22}b_{22} \end{pmatrix} AB=(a11Ba21Ba12Ba22B)=a11b11a11b21a21b11a21b21a11b12a11b22a21b21a21b22a12b11a12b21a22b11a22b21a12b12a12b22a22b12a22b22

密度算子

纯态密度算子

ρ = ∣ ψ ⟩ ⟨ ψ ∣ \rho=|\psi\rang\lang\psi| ρ=ψψ

期望 ⟨ A ⟩ = T r ( ρ A ) \lang A\rang=Tr(\rho A) A=Tr(ρA)

混合态密度算子

ρ = ∑ i = 1 n p i ρ i = ∑ i = 1 n p i ∣ ψ i ⟩ ⟨ ψ i ∣ \rho=\sum^n_{i=1}p_i\rho_i=\sum^n_{i=1}p_i|\psi_i\rang\lang\psi_i| ρ=i=1npiρi=i=1npiψiψi

性质

  • 密度算子是厄米算子, ρ = ρ + \rho=\rho^+ ρ=ρ+
  • T r ( ρ ) = 1 Tr(\rho)=1 Tr(ρ)=1
  • 密度算子是正算子,即 ⟨ u ∣ ρ ∣ u ⟩ ≥ 0 \lang u|\rho|u\rang\ge0 uρu0

完全混合态

ρ = 1 n I \rho=\frac{1}{n}I ρ=n1I

T r ( ρ 2 ) = 1 n Tr(\rho^2)=\frac{1}{n} Tr(ρ2)=n1

纯态 T r ( ρ ) = 1 Tr(\rho)=1 Tr(ρ)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值