手写数字识别理论
- 什么是机器识别手写数字
输入:数字图片–>处理:网络模型–>输出:识别结果
- mnist数据集是什么
该数据集包含60000个用于训练的示例和10000个用于测试的示例
该数据集包含0到9共10类手写数字图片,每张图片都做了尺寸归一化,都是28X28大小的灰度图。
- 手写字体的识别流程
- 定义超参数(自己定义的一些常量,比如你想这个循环跑几次,10次,这个就是超参数)
- 构建transforms,主要是对图像做变换
- 下载、加载数据集mnist
- 构建网络模型,定义优化器
- 定义训练方法
- 定义测试方法
- 开始训练模型,输出预测结果
手写数字识别实战
专业名词的解释
- 参数与超参数
参数:模型f(x,θ)中的θ称为模型的参数,可以通过优化算法进行学习
超参数:用来定义模型结构或者优化策略
- batch_size批处理
每次处理的数据数量
- epoch轮次
把每一个数据集,循环运行几轮
- transforms变换
主要将图片转化为tensor,旋转图片,以及正则化
- nomalize正则化
模型出现过拟合现象时,降低模型复杂度
- 卷积层
由卷积核构建,卷积核简称为卷积,也称为滤波器,卷积的大小可以在实际需要时自定义其长和宽
- 池化层
对图片进行压缩(降采样)的一种方法如max pooling 、average pooling等
- 激活层
激活函数的作用就是,在所有的隐藏层之间添加一个激活函数,这样的输出就是一个非线性函数了,因而神经网络的表达能力更加强大了。
- 损失函数
在深度学习中,损失反映模型最后预测结果与实际真值之间的差距,可以用来分析训练过程的好坏,模型是否收敛等,例如均方损失、交叉熵损失等。
代码部份
# 加载必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms
# 定义超参数
BATCH_SIZE = 64 # 每一批处理的数据
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPOCHS = 10 # 训练数据集的轮次
# 构建pipeline 对图像处理
pipeline = transforms.Compose([
transforms.ToTensor(),# 将图片转换成tensor(张量)
transforms.Normalize((0.1307,),(0.3081,))# 正则化:降低模型复杂度
])
# 下载、加载数据
from torch.utils.data import DataLoader
# 下载数据集
train_set = datasets.MNIST("data",train=True,download=True,transform=pipeline)
test_set = datasets.MNIST("data",train=False,download=True,transform=pipeline)
# 加载数据集
train_loader = DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)
test_loader = DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)
# 构建网络模型
class Digit(nn.Module):
def __init__(self):
super().__init__()
self.conv1=nn.Conv2d(1,10,5) # 1:灰度图片的通道 10:输出通道 5:kernel卷积核
self.conv2 = nn.Conv2d(10, 20, 3) # 10:输入通道 20:输出通道,500:输出通道
self.fc1 = nn.Linear(20*10*10,500) # 20*10*10:输入通道 ,500:输出通道
self.fc2 = nn.Linear(500,10) # 500:输入通道 ,10:输出通道
def forward(self,x):
input_size=x.size(0) # batch_size
x=self.conv1(x) # 输入:batch*1*28*28,输出:batch*10*24*24(28-5+1)
x=F.relu(x) # 保持shape不变,输出:batch*10*24*24
x=F.max_pool2d(x,2,2) # 输入:batch*10*24*24 输出:batch*10*12*12
x= self.conv2(x)#输入:batch*10*12*12 输出:batch*20*10*10(12-3+1)
x= F.relu(x)
x=x.view(input_size,-1)# 拉平,-1自动计算维度20*10*10
x=self.fc1(x)#输入:batch*2000 输出batch*500
x= F.relu(x)#保持shape不变
x = self.fc2(x)# 输入:batch*500 输 出batch*10
output = F.log_softmax(x,dim=1)#计算分类后,每个数字的概率值
return output
# 定义优化器
model = Digit().to(DEVICE)
optimizer = optim.Adam(model.parameters())
# 定义训练方法
def train_model(model,device,train_loader,optimizer,epoch):
# 模型训练
model.train()
for batch_index, (data,target) in enumerate(train_loader):
#部署到DEVICE
data, target = data.to(device),target.to(device)
# 梯度初始化为0
optimizer.zero_grad()
# 训练后的结果
output = model(data)
# 计算损失
loss = F.cross_entropy(output,target)
# 反向传播
loss.backward()
# 参数优化
optimizer.step()
if batch_index % 3000 == 0:
print("Train Epoch :{} \t Loss : {:.6f}".format(epoch,loss.item()))
# 定义测试方法
def test_model(model,device,test_loader):
# 模型验证
model.eval()
#正确率
correct = 0.0
# 测试损失
test_loss = 0.0
with torch.no_grad(): # 不会计算梯度,也不会进行反向传播
for data,target in test_loader:
# 部署到DEVICE
data, target = data.to(device),target.to(device)
# 测试数据
output = model(data)
# 计算测试损失
test_loss +=F.cross_entropy(output,target).item()
# 找到概率值最大的下标
pred = output.max(1,keepdim=True)[1]
# 累计正确的值
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print("Test --Average loss :{:.4f},Accuracy : {:.3f}\n".format(test_loss,100*correct/len(test_loader.dataset)))
for epoch in range(1,EPOCHS+1):
train_model(model,DEVICE,train_loader,optimizer,epoch)
test_model(model,DEVICE, test_loader)
结果
n(test_loader.dataset)))
for epoch in range(1,EPOCHS+1):
train_model(model,DEVICE,train_loader,optimizer,epoch)
test_model(model,DEVICE, test_loader)
## 结果
![在这里插入图片描述](https://img-blog.csdnimg.cn/4fb02a58a1a34397a61c71a6c94a6c12.png)