深度学习笔记二(task03-05)

一.过拟合及欠拟合及其解决方案

  • 训练误差和泛化误差
    训练误差是指在训练数据集上表现出的误差,泛化误差指的是模型在任意一个测试数据样本上表现出来的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以用损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。在机器学习模型应关注降低泛化误差。

  • 验证数据集
    从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证
    集,而将剩余部分作为真正的训练集。

  • K折交叉验证
    -由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

  • 过拟合和欠拟合
    1.欠拟合:模型无法得到较低的训练误差。
    2.过拟合:模型的训练误差远小于它在测试数据集上的误差

  • 模型复杂度
    为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征x和对应的标量标签y组成的训练数据集,多项式函数拟合的目标是找一个K阶多项式函数:
    在这里插入图片描述
    来近似 y。在上式中,Wk是模型的权重参数,b是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。

给定训练数据集,模型复杂度和误差之间的关系
在这里插入图片描述

  • 训练数据集大小
    影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。
  • 权重衰减
    方法:
    权重衰减等价于 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。
  • L2范数正则化
    L2范数正则化在模型原损失函数基础上添加L2范数惩罚项,从而得到训练所需要最小化的函数。L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积。以线性回归中的线性回归损失函数为例
    在这里插入图片描述
    在这里插入图片描述

二.梯度消失和梯度爆炸

深度模型有关数值稳定性的典型问题是消失和爆炸
当神经网络的层数较多时,模型的数值稳定性容易变差
在这里插入图片描述
在这里插入图片描述
考虑环境因素

  • 协变量偏移
  • 标签偏移
  • 概念偏移

三.循环神经网络进阶

我们已知RNN存在的问题:梯度较容易出现衰减或者爆炸(BPTT)
门控循环神经网络:捕捉时间序列中时间步距离较大的依赖关系在这里插入图片描述
在这里插入图片描述

  • 重置门有助于捕捉时间序列里短期的依赖关系
  • 更新门有助于捕捉时间序列里长期的依赖关系

- LSTM

长短期记忆long short-term memory :
遗忘门:控制上一时间步的记忆细胞 输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动
在这里插入图片描述
深度循环神经网络
在这里插入图片描述
双向循环神经网络
在这里插入图片描述

四.机器翻译及相关技术

机器翻译
机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

  • 分词
  • 建立词典

Encoder-Decoder
encoder:输入到隐藏状态
decoder:隐藏状态到输出
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

五.注意力机制和Seq2seq模型

注意力机制
在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。

与此同时,解码的目标词语可能只与原输入的部分词语有关,而并不是与所有的输入有关。例如,当把“Hello world”翻译成“Bonjour le monde”时,“Hello”映射成“Bonjour”,“world”映射成“monde”。在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。
在这里插入图片描述
注意力机制框架
在这里插入图片描述
不同的attetion layer的区别在于score函数的选择,在本节的其余部分,我们将讨论两个常用的注意层 Dot-product Attention 和 Multilayer Perceptron Attention;随后我们将实现一个引入attention的seq2seq模型并在英法翻译语料上进行训练与测试。
点积注意力
在这里插入图片描述
多层感知机注意力
在这里插入图片描述
引入注意力机制的Seq2seq模型
将注意机制添加到sequence to sequence 模型中,以显式地使用权重聚合states。下图展示encoding 和decoding的模型结构,在时间步为t的时候。此刻attention layer保存着encodering看到的所有信息——即encoding的每一步输出。在decoding阶段,解码器的t时刻的隐藏状态被当作query,encoder的每个时间步的hidden states作为key和value进行attention聚合. Attetion model的输出当作成上下文信息context vector,并与解码器Dt输入拼接起来一起送到解码器
在这里插入图片描述
在这里插入图片描述

六.Transformer

对于主流的神经网络架构如卷积神经网络(CNNs)和循环神经网络(RNNs)

  • CNNs易于并行化,却不适合捕捉变长序列的依赖关系
  • RNNs适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列
  • 为了整合CNN和RNN的优势,[Vaswani et al., 2017] 创新性地使用注意力机制设计了Transformer模型。该模型利用attention机制实现了并行化捕捉序列依赖,并且同时处理序列的每个位置的tokens,上述优势使得Transformer模型在性能优异的同时大大减少了训练时间
  • Transformer与seq2seq模型的区别:
    1.Transformer blocks:将seq2seq模型重的循环网络替换为了Transformer Blocks,该模块包含一个多头注意力层(Multi-head Attention Layers)以及两个position-wise feed-forward networks(FFN)。对于解码器来说,另一个多头注意力层被用于接受编码器的隐藏状态。
    2.Add and norm:多头注意力层和前馈网络的输出被送到两个“add and norm”层进行处理,该层包含残差结构以及层归一化。
    3.Position encoding:由于自注意力层并没有区分元素的顺序,所以一个位置编码层被用于向序列元素里添加位置信息。
    在这里插入图片描述
    多头注意力层
    理解以下自注意力(self-attention)的结构。自注意力模型是一个正规的注意力模型,序列的每一个元素对应的key,value,query是完全一致的。如图10.3.2 自注意力输出了一个与输入长度相同的表征序列,与循环神经网络相比,自注意力对每个元素输出的计算是并行的,所以我们可以高效的实现这个模块。
    在这里插入图片描述
    多头注意力层包含h个并行的自注意力层,每一个这种层被成为一个head。对每个头来说,在进行注意力计算之前,我们会将query、key和value用三个现行层进行映射,这h个注意力头的输出将会被拼接之后输入最后一个线性层进行整合。
    在这里插入图片描述
    基于位置的前馈网络
    Transformer 模块另一个非常重要的部分就是基于位置的前馈网络(FFN),它接受一个形状为(batch_size,seq_length, feature_size)的三维张量。Position-wise FFN由两个全连接层组成,他们作用在最后一维上。因为序列的每个位置的状态都会被单独地更新,所以我们称他为position-wise,这等效于一个1x1的卷积。
    Add和Norm
    除了上面两个模块之外,Transformer还有一个重要的相加归一化层,它可以平滑地整合输入和其他层的输出,因此我们在每个多头注意力层和FFN层后面都添加一个含残差连接的Layer Norm层。这里 Layer Norm 与7.5小节的Batch Norm很相似,唯一的区别在于Batch Norm是对于batch size这个维度进行计算均值和方差的,而Layer Norm则是对最后一维进行计算。层归一化可以防止层内的数值变化过大,从而有利于加快训练速度并且提高泛化性能。
    编码器
    我们已经有了组成Transformer的各个模块,现在我们可以开始搭建了!编码器包含一个多头注意力层,一个position-wise FFN,和两个 Add and Norm层。对于attention模型以及FFN模型,我们的输出维度都是与embedding维度一致的,这也是由于残差连接天生的特性导致的,因为我们要将前一层的输出与原始输入相加并归一化。
    解码器
    Transformer 模型的解码器与编码器结构类似,然而,除了之前介绍的几个模块之外,编码器部分有另一个子模块。该模块也是多头注意力层,接受编码器的输出作为key和value,decoder的状态作为query。与编码器部分相类似,解码器同样是使用了add and norm机制,用残差和层归一化将各个子层的输出相连。

仔细来讲,在第t个时间步,当前输入Xt是query,那么self attention接受了第t步以及前t-1步的所有输入。在训练时,由于第t位置的输入可以观测到全部的序列,这与预测阶段的情形项矛盾,所以我们要通过将第t个时间步所对应的可观测长度设置为t,以消除不需要看到的未来的信息。
在这里插入图片描述
对于Transformer解码器来说,构造方式与编码器一样,除了最后一层添加一个dense layer以获得输出的置信度分数。下面让我们来实现一下Transformer Decoder,除了常规的超参数例如vocab_size embedding_size 之外,解码器还需要编码器的输出 enc_outputs 和句子有效长度 enc_valid_length。

七.卷积神经网络基础

  • 卷积层 池化层

  • 二维卷积层:常用于处理图像数据

  • 二维互相关运算
    二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
    在这里插入图片描述

  • 二维卷积层
    二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

  • 互相关运算与卷积运算
    卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

  • 特征图与感受野
    二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x
    的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2X2的输出记为Y,将与另一个形状为2X2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

  • 填充和步幅
    卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。
    填充
    填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
    在这里插入图片描述
    在这里插入图片描述
    步幅
    在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
    在这里插入图片描述
    多输入通道和多输出通道
    之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是和(像素),那么它可以表示为一个3 x h x w的多维数组,我们将大小为3的这一维称为通道(channel)维。
    卷积层与全连接层的对比
    在这里插入图片描述
    池化
    二维池化层
    池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为2x2的最大池化。
    在这里插入图片描述

八.LeNet

Convolutional Neural Networks

  • 使用全连接层的局限性:

1.图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
2.对于大尺寸的输入图像,使用全连接层容易导致模型过大。

  • 使用卷积层的优势:

1.卷积层保留输入形状。
2.卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。
LeNet 模型
LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。
在这里插入图片描述
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。

卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5X5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
可以看到,在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。
在这里插入图片描述

九.深度卷积神经网络

LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。

神经网络发展的限制:数据、硬件
AlexNet
首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:

1.8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
2.将sigmoid激活函数改成了更加简单的ReLU激活函数。
3.用Dropout来控制全连接层的模型复杂度。
4.引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。
在这里插入图片描述
使用重复元素的网络(VGG)
VGG:通过重复使⽤简单的基础块来构建深度模型。
Block:数个相同的填充为1、窗口形状为3x3的卷积层,接上一个步幅为2、窗口形状为2x2的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。
在这里插入图片描述
⽹络中的⽹络(NiN)
LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。
在这里插入图片描述
GoogLeNet
1.由Inception基础块组成。
2.Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
3.可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值