深度学习中隐变量(latent variable)理解

本文探讨了通过引入隐变量来简化复杂多元高斯分布的方法。当隐变量取不同值时,变量x,y服从不同的二维高斯分布,从而将原本复杂的3元混合高斯分布分解为更易处理的形式。此外,还讨论了隐变量的不同状态对应于不同区域点的密度,即隐变量的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假如有 x , y x,y x,y服从如下分布关系:在这里插入图片描述
看起来像是3元混合高斯分布,比较复杂。

如果我们再引入隐变量 z z z,使得 z = z 1 z = z_1 z=z1时, x , y ∼ N ( μ 1 , Σ 1 ) x, y \sim N(\mu_1, \Sigma_1) x,yN(μ1,Σ1) z = z 2 z = z_2 z=z2时, x , y ∼ N ( μ 2 , Σ 2 ) x, y \sim N(\mu_2, \Sigma_2) x,yN(μ2,Σ2) z = z 3 z = z_3 z=z3时, x , y ∼ N ( μ 3 , Σ 3 ) x, y \sim N(\mu_3, \Sigma_3) x,yN(μ3,Σ3)。问题就变得简单多了。

而从图中可以看出每个区域点的密度也不一样,这对应隐变量 z z z的分布,即 P ( z = z i ) = p i P(z = z_i) = p_i P(z=zi)=pi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值