环形运输

在一条环形公路旁均匀地分布着N座仓库,编号为1~N,编号为 i 的仓库与编号为 j 的仓库之间的距离定义为 dist(i,j)=min⁡(|i-j|,N-|i-j|),也就是逆时针或顺时针从 i 到 j 中较近的一种。
每座仓库都存有货物,其中编号为 i 的仓库库存量为 Ai。
在 i 和 j 两座仓库之间运送货物需要的代价为 Ai+Aj+dist(i,j)。
求在哪两座仓库之间运送货物需要的代价最大。
输入格式
第一行包含一个整数N。
第二行包含N个整数A1~AN。
输出格式
输出一个整数,表示最大代价。

**这道题主要是对环形进行处理我们要把环形变成一个链状,这样才能去做这一个题。首先我们理解题意;
我们要找到两个点,求最大的代价,代价就是Ai+Aj+dist|i-j|,那么我们就可以知道要让两点之间的距离最小。这两个点之间的距离要是大于n/2,那么我们就要用反向的距离。
在处理环的时候我们要把环在任意的位置段开,然后把环赋值一倍接到换的末尾,这样就形成了一个2n的直线公路。
这个问题可以转化为在长度为2
n的公路上,在满足1<=i<=j<=2*n并且i-j<=n/2的两座仓库之间进行运送货物,运送代价Ai+Aj+i-j最大,这样我们就可以用一个单调队列来解决这一个问题,我们的单调队列一直存储在n/2的区间中的最大值。
**

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N=2000010;
int w[N],q[N];
int res,n;
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&w[i]);
        w[i+n]=w[i];
    }
    int head =0,totl=-1;//表示队列的投河尾
    int len=n/2;
    for(int i=1;i<=n*2;i++)
    {
        if(head<=totl&&q[head]<i-len)//判断是否不再合法区域间
        head++;
        res=max(res,i-q[head]+w[i]+w[q[head]]);
        while(head<=totl&&w[q[totl]]-q[totl]<w[i]-i)//如果队尾比当前值小,就将队尾删除
        totl--;
        q[++totl]=i;
    }
    printf("%d\n",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值