机器学习day03

回归与聚类算法

  • 线性回归
  • 欠拟合和过拟合
  • 岭回归

分类算法:逻辑回归

模型保存与加载

无监督学习 K-means算法

一、线性回归

回归问题:目标值为连续型的数据

1. 什么是线性回归

函数关系 : 特征值 + 目标值

  • 定义:线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。
    • 特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归
  • image-20240327135928880 - 特征值:x1、x2、x3…… - 目标值:h(w) - 权重值/回归系数:w1、w2、w3…… - 偏置:b
  • 特征值与目标值之间建立的一个关系,这个可以理解为回归方程/线性模型
2. 线性模型

线性回归当中的关系有两种,一种是线性关系,另一种是非线性关系。在这里我们只能画一个平面更好去理解,所以都用单个特征举例子。

  • 线性关系(自变量一次)

y = w 1 ∗ x 1 + w 2 ∗ x 2 + w 3 ∗ x 3 + b y=w_1*x_1+w_2*x_2+w_3*x_3+b y=w1x1+w2x2+w3x3+b

image-20240327141202912image-20240327141248966

注释:如果在单特征与目标值的关系呈直线关系,或者两个特征与目标值呈现平面的关系

更高维度的我们不用自己去想,记住这种关系即可

  • 非线性关系(参数一次,即x前面的系数为一次)

y = w 1 ∗ x 1 + w 2 ∗ x 2 2 + w 3 ∗ x 3 2 + b y=w_1*x_1+w_2*x_2^2+w_3*x_3^2+b y=w1x1+w2x22+w3x32+b

image-20240327141349825

注释:为什么会这样的关系呢?原因是什么?我们后面 讲解过拟合欠拟合重点介绍

如果是非线性关系,那么回归方程可以理解为:w1x1+w2x22+w3x32

线性关系一定是线性模型,线性模型不一定是线性关系

3. 线性回归的损失和误差原理

假设对于房子,真实的数据之间存在这样的关系:

真实关系:真实房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率

那么现在呢,我们随意指定一个关系(猜测):

随机指定关系:预测房子价格 = 0.25×中心区域的距离 + 0.14×城市一氧化氮浓度 + 0.42×自住房平均房价 + 0.34×城镇犯罪率

其中,预测值与真实值之间存在误差:

image-20240327143422947

衡量误差的指标: 损失函数 / cost / 成本函数 / 目标函数

4. 损失函数
image-20240327143938043
  • y_i为第i个训练样本的真实值
  • h(x_i)为第i个训练样本特征值组合预测函数
  • 又称最小二乘法

如何去减少这个损失,使我们预测的更加准确些?(优化损失)既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失!!!

5. 优化算法

如何去求模型当中的W,使得损失最小?(目的是找到最小损失对应的W值)

线性回归经常使用的两种优化算法:

  • 正规方程 : 天才,直接求解w LinearRegression
  • 梯度下降 : 勤奋努力的普通人,不断试错,不断改进 SGDRegressor
6. 正规方程
image-20240327144901217
7. 梯度下降(Gradient Descent)
image-20240327145337700

image-20240327145356698image-20240327145409977

所以有了梯度下降这样一个优化算法,回归就有了"自动学习"的能力

8. 线性回归API
  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • 通过正规方程优化
    • fit_intercept:是否计算偏置
    • LinearRegression.coef_:回归系数
    • LinearRegression.intercept_:偏置
  • sklearn.linear_model.SGDRegressor(loss=“squared_loss”, fit_intercept=True, learning_rate =‘invscaling’, eta0=0.01)
    • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型。
    • loss:损失类型
      • loss=”squared_loss”: 普通最小二乘法
    • fit_intercept:是否计算偏置
    • learning_rate : string, optional
      • 学习率填充
      • ‘constant’: eta = eta0
      • ‘optimal’: eta = 1.0 / (alpha * (t + t0)) [default]
      • ‘invscaling’: eta = eta0 / pow(t, power_t)
        • power_t=0.25:存在父类当中
      • 对于一个常数值的学习率来说,可以使用learning_rate=’constant’ ,并使用eta0来指定学习率。
    • SGDRegressor.coef_:回归系数
    • SGDRegressor.intercept_:偏置

sklearn提供给我们两种实现的API, 可以根据选择使用

9. 回归性能评估(均方误差)

线性回归的性能衡量方法:

均方误差(Mean Squared Error)MSE)评价机制:image-20240327160151290

注:y^i为预测值,¯y为真实值

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • 均方误差回归损失
    • y_true:真实值
    • y_pred:预测值
    • return:浮点数结果
10. 对比
梯度下降正规方程
需要选择学习率不需要
需要迭代求解一次运算得出
特征数量较大可以使用需要计算方程,时间复杂度高0(n^3)
  • 选择:
    • 小规模数据:
      • LinearRegression(不能解决拟合问题)
      • 岭回归
    • 大规模数据:SGDRegressor
11. 拓展-关于优化方法GD 、SGD 、SAG
image-20240327165740494

二、欠拟合和过拟合

问题:训练数据训练的很好啊,误差也不大,为什么在测试集上面有问题呢?

当算法在某个数据集当中出现这种情况,可能就出现了过拟合现象。

  • 欠拟合image-20240327170818661

  • 过拟合image-20240327170834447

  • 分析

    • 第一种情况:因为机器学习到的天鹅特征太少了,导致区分标准太粗糙,不能准确识别出天鹅。
    • 第二种情况:机器已经基本能区别天鹅和其他动物了。然后,很不巧已有的天鹅图片全是白天鹅的,于是机器经过学习后,会认为天鹅的羽毛都是白的,以后看到羽毛是黑的天鹅就会认为那不是天鹅。
1. 定义
  • 过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
  • 欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)
image-20240327171222031

那么是什么原因导致模型复杂?线性回归进行训练学习的时候变成模型会变得复杂,这里就对应前面再说的线性回归的两种关系,非线性关系的数据,也就是存在很多无用的特征或者现实中的事物特征跟目标值的关系并不是简单的线性关系。

2. 原因以及解决办法
  • 欠拟合原因以及解决办法
    • 原因:学习到数据的特征过少
    • 解决办法:增加数据的特征数量
  • 过拟合原因以及解决办法
    • 原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
    • 解决办法:
      • 正则化

在这里针对回归,我们选择了正则化。但是对于其他机器学习算法如分类算法来说也会出现这样的问题,除了一些算法本身作用之外(决策树、神经网络),我们更多的也是去自己做特征选择,包括之前说的删除、合并一些特征

image-20240327171731416

如何解决?

image-20240327171834550

在学习的时候,数据提供的特征有些影响模型复杂度或者这个特征的数据点异常较多,所以算法在学习的时候尽量减少这个特征的影响(甚至删除某个特征的影响),这就是正则化

注:调整时候,算法并不知道某个特征影响,而是去调整参数得出优化的结果

3. 正则化类别
  • L2正则化
    • 作用:可以使得其中一些W的都很小,都接近于0,削弱某个特征的影响
    • 优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象
    • Ridge回归(岭回归)
    • 加入L2正则化后的损失函数:image-20240327172733728
  • L1正则化
    • 作用:可以使得其中一些W的值直接为0,删除这个特征的影响
    • LASSO回归
4. 拓展-原理(了解)

线性回归的损失函数用最小二乘法,等价于当预测值与真实值的误差满足正态分布时的极大似然估计;岭回归的损失函数,是最小二乘法+L2范数,等价于当预测值与真实值的误差满足正态分布,且权重值也满足正态分布(先验分布)时的最大后验估计;LASSO的损失函数,是最小二乘法+L1范数,等价于等价于当预测值与真实值的误差满足正态分布,且且权重值满足拉普拉斯分布(先验分布)时的最大后验估计

三、线性回归的改进——岭回归

1. 带有L2正则化的线性回归-岭回归

岭回归,其实也是一种线性回归。只不过在算法建立回归方程时候,加上正则化的限制,从而达到解决过拟合的效果

2. API
  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=“auto”, normalize=False)
    • 具有l2正则化的线性回归
    • alpha:正则化力度(惩罚性系数),也叫 λ
      • λ取值:0~1 1~10
    • fit_intercept:是否计算偏置
    • solver:会根据数据自动选择优化方法
      • sag:如果数据集、特征都比较大,选择该随机梯度下降优化
    • normalize:数据是否进行标准化
      • normalize=False:可以在fit之前调用preprocessing.StandardScaler标准化数据
    • Ridge.coef_:回归权重
    • Ridge.intercept_:回归偏置

Ridge方法相当于SGDRegressor(penalty=‘l2’, loss=“squared_loss”),只不过SGDRegressor实现了一个普通的随机梯度下降学习,推荐使用Ridge(实现了SAG)

  • sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
    • 具有l2正则化的线性回归,可以进行交叉验证
    • coef_:回归系数
image-20240327181033069
  • 正则化力度越大,权重系数会越小
  • 正则化力度越小,权重系数会越大

四、分类算法-逻辑回归与二分类

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。

1. 逻辑回归的应用场景
  • 广告点击率
  • 是否为垃圾邮件
  • 是否患病
  • 金融诈骗
  • 虚假账号

看到上面的例子,我们可以发现其中的特点,那就是都属于两个类别之间的判断。逻辑回归就是解决二分类问题的利器

2. 逻辑回归的原理
  • 输入:image-20240327193133899

逻辑回归的输入就是一个线性回归的结果(输出)。

  • 激活函数:sigmoid函数

    image-20240327193241069
  • 分析

    • 回归的结果输入到sigmoid函数当中
    • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值。即,以阈值为划分两类的依据(大于阈值的为一类,小于阈值的为另一类)

逻辑回归最终的分类是通过属于某个类别的概率值来判断是否属于某个类别,并且这个类别默认标记为1(正例),另外的一个类别会标记为0(反例)。(方便损失计算)

**输出结果解释(重要):**假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

所以接下来我们回忆之前的线性回归预测结果我们用均方误差衡量,那如果对于逻辑回归,我们预测的结果不对该怎么去衡量这个损失呢?我们来看这样一张图

image-20240327194048594

那么如何去衡量逻辑回归的预测结果与真实结果的差异呢?

3. 损失以及最优化
  • 损失:逻辑回归的损失,称之为对数似然损失,公式如下:(分段函数)
image-20240327194349017

image-20240327194713325image-20240327194811236

true为0情况下:predict越靠近0损失越小,越靠近1损失越高,反之亦然,选取log形式只是形状趋势搞好符合

  • 综合完整损失函数image-20240327195151968
image-20240327195459311
  • 优化
    • 同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。
4. 逻辑回归API
  • sklearn.linear_model.LogisticRegression(solver=‘liblinear’, penalty=‘l2’, C = 1.0)
    • solver:优化求解方式(默认开源的liblinear库实现,内部使用了坐标轴下降法来迭代优化损失函数)
      • sag:根据数据集自动选择,随机平均梯度下降
    • penalty:正则化的种类
    • C:正则化力度

默认将类别数量少的当做正例


LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习,也支持平均随机梯度下降法(ASGD),可以通过设置average=True。而使用LogisticRegression(实现了SAG)

五、分类的评估方法

1. 精确率与召回率
  • 混淆矩阵:

    在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

image-20240327202814670

TP=TruePossitive

FN = FalseeNegative

  • 精确率(Precision)与召回率(Recall)

    • 精确率:预测结果为正例样本中真实为正例的比例image-20240327203020415

    • 召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)image-20240327203046635

还有其他的评估标准,F1-score,反映了模型的稳健型

image-20240327203209669

跟找gay综艺一样,在11个男人找到5个gay。精确率表示选择的五个人有几个是真gay,召回率表示五个真gay里谁被选中了(召回率越高说明你看人越准)

2. 分类评估报告API
  • sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )
    • y_true:真实目标值
    • y_pred:估计器预测目标值
    • labels:指定类别对应的数字
    • target_names:目标类别名称
    • return:每个类别精确率与召回率

问题:如何衡量样本不均衡(正例样本很多,反例样本很少)下的评估?

3. ROC曲线与AUC指标
  • TPR与FPR

    • TPR = TP / (TP + FN) 召回率
      • 所有真实类别为1的样本中,预测类别为1的比例
    • FPR = FP / (FP + FN)
      • 所有真实类别为0的样本中,预测类别为1的比例
  • ROC曲线

    • ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5
image-20240327205007696

AUC 为:ROC曲线围出的面积

  • AUC指标

    • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
    • AUC的最小值为0.5,最大值为1,取值越高越好
    • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
    • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

    最终AUC的范围在[0.5, 1]之间,并且越接近1越好

  • AUC计算API

    • from sklearn.metrics import roc_auc_score
      • sklearn.metrics.roc_auc_score(y_true, y_score)
        • 计算ROC曲线面积,即AUC值
        • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
        • y_score:每个样本预测的概率值
  • 总结

    • AUC只能用来评价二分类
    • AUC非常适合评价样本不平衡中的分类器性能

六、模型保存与加载

1. sklearn模型的保存和加载API
  • import joblib

    • 保存:joblib.dump(rf, ‘test.pkl’)

      rf : 预估器

    • 加载:estimator = joblib.load(‘test.pkl’)

七、无监督学习-K-means聚类算法

我们可以怎样最有用地对其进行归纳和分组?我们可以怎样以一种压缩格式有效地表征数据?这都是无监督学习的目标,之所以称之为无监督,是因为这是从无标签的数据开始学习的。

无监督学习:无目标值

  • 无监督学习包含算法
    • 聚类
      • K-means(K均值聚类)
    • 降维
      • PCA(主成分分析)

K-means的聚类效果图:image-20240328102946709

1. K-means聚类步骤
  • 1、随机设置K个特征空间内的点作为初始的聚类中心
  • 2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
  • 3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
  • 4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步过程
image-20240328103616742
2. K-meansAPI
  • sklearn.cluster.KMeans(n_clusters=8,init=‘k-means++’)

    • k-means聚类
    • n_clusters:开始的聚类中心数量

    看需求;调节超参数

    • init:初始化方法,默认为’k-means ++’
    • labels_:默认标记的类型,可以和真实值比较(不是值比较)
3. Kmeans性能评估指标 (轮廓系数)

高内聚,低耦合

  • 轮廓系数image-20240328104430691

注:对于每个点i 为已聚类数据中的样本 ,b_i 为i 到其它族群的所有样本的距离最小值,a_i 为i 到本身簇的距离平均值。最终计算出所有的样本点的轮廓系数平均值

  • 轮廓系数值分析
image-20240328104511135
  • 分析过程(我们以一个蓝1点为例)

    • 1、计算出蓝1离本身族群所有点的距离的平均值a_i
    • 2、蓝1到其它两个族群的距离计算出平均值红平均,绿平均,取最小的那个距离作为b_i
    • 根据公式:极端值考虑:如果b_i >>a_i: 那么公式结果趋近于1;如果a_i>>>b_i: 那么公式结果趋近于-1
  • 结论:如果b_i>>a_i:趋近于1效果越好, b_i<<a_i:趋近于-1,效果不好。轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

  • 轮廓系数API

    • sklearn.metrics.silhouette_score(X, labels)
      • 计算所有样本的平均轮廓系数
      • X:特征值
      • labels:被聚类标记的目标值
4. K-means总结
  • 特点分析:采用迭代式算法,直观易懂并且非常实用
  • 缺点:容易收敛到局部最优解(多次聚类)

注意:聚类一般做在分类之前

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值