python实现情感分析(Word2Vec)

python实现情感分析(Word2Vec)

** 前几天跟着老师做了几个项目,老师写的时候劈里啪啦一顿敲,写了个啥咱也布吉岛,线下自己就瞎琢磨,终于实现了一个最简单的项目。输入文本,然后分析情感,判断出是好感还是反感。看最终结果:↓↓↓↓↓↓
1
在这里插入图片描述
2
在这里插入图片描述
大概就是这样,接下来实现一下。

•加载数据,预处理

数据就是正反两类,保存在neg.xls和pos.xls文件中,在这里插入图片描述
数据内容类似购物网站的评论,分别有一万多个好评和一万多个差评,通过对它们的处理,变成我们用来训练模型的特征和标记。
首先导入几个python常见的库,train_test_split用来对特征向量的划分,numpy和pands是处理数据常见的库,jieba库用来分词,joblib用来保存训练好的模型,sklearn.svm是机器学习训练模型常用的库,我觉得核心的就是Word2Vec这个库了,作用就是将自然语言中的字词转为计算机可以理解的稠密向量。

from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import jieba as jb
from sklearn.externals import joblib
from sklearn.svm import SVC
from gensim.models.word2vec import Word2Vec

加载数据,将数据分词,将正反样本拼接,然后创建全是0和全是1的向量拼接起来作为标签,

    neg =pd.read_excel("data/neg.xls",header=None,index=None)
    pos =pd.read_excel("data/pos.xls",header=None,index=None)
    # 这是两类数据都是x值
    pos['words'] = pos[0].apply(lambda x:list(jb.cut(x)))
    neg['words'] = neg[0].apply(lambda x:list(jb.cut(x)))
    #需要y值  0 代表neg 1代表是pos
    y = np.concatenate((np.ones(len(pos)),np.zeros(len(neg))))
    X = np.concatenate((pos['words'],neg['words']))

•切分训练集和测试集

利用train_test_split函数切分训练集和测试集,test_size表示切分的比例,百分之二十用来测试,这里的random_state是随机种子数,为了保证程序每次运行都分割一样的训练集和测试集。否则,同样的算法模型在不同的训练集和测试集上的效果不一样。训练集和测试集的标签无非就是0和1,直接保存,接下来单独处理特征向量。

    X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=3)
    #保存数据
    np.save("data/y_train.npy",y_train)
    np.save("data/y_test.npy",y_test)

•词向量计算

网上搜到的专业解释是这样说的:使用一层神经网络将one-hot(独热编码)形式的词向量映射到分布式形式的词向量。使用了Hierarchical softmax, negative sampling等技巧进行训练速度上的优化。作用:我们日常生活中使用的自然语言不能够直接被计算机所理解,当我们需要对这些自然语言进行处理时,就需要使用特定的手段对其进行分析或预处理。使用one-hot编码形式对文字进行处理可以得到词向量,但是,由于对文字进行唯一编号进行分析的方式存在数据稀疏的问题,Word2Vec能够解决这一问题,实现word embedding
专业解释的话我还是一脸懵,后来看了一个栗子,大概是这样:
word2vec也叫word embeddings,中文名“词向量”,作用就是将自然语言中的字词转为计算机可以理解的稠密向量(Dense Vector)。在word2vec出现之前,自然语言处理经常把字词转为离散的单独的符号,也就是One-Hot Encoder。
在这图片描述
在语料库中,杭州、上海、宁波、北京各对应一个向量,向量中只有一个值为1,其余都为0。但是使用One-Hot Encoder有以下问题。一方面,城市编码是随机的,向量之间相互独立,看不出城市之间可能存在的关联关系。其次,向量维度的大小取决于语料库中字词的多少。如果将世界所有城市名称对应的向量合为一个矩阵的话,那这个矩阵过于稀疏,并且会造成维度灾难。
使用Vector Representations可以有效解决这个问题。Word2Vec可以将One-Hot Encoder转化为低维度的连续值,也就是稠密向量,并且其中意思相近的词将被映射到向量空间中相近的位置。
如果将embed后的城市向量通过PCA降维后可视化展示出来,那就是这个样子。
在这里插入图片描述

•计算词向量

#初始化模型和词表
    wv = Word2Vec(size=300,min_count=10)
    wv.build_vocab(x_train)
    # 训练并建模
    wv.train(x_train,total_examples=1, epochs=1)
    #获取train_vecs
    train_vecs = np.concatenate([ build_vector(z,300,wv) for z in x_train])
    #保存处理后的词向量
    np.save('data/train_vecs.npy',train_vecs)
    #保存模型
    wv.save("data/model3.pkl")
    
    wv.train(x_test,total_examples=1, epochs=1)
    test_vecs = np.concatenate([build_vector(z,300,wv) for z in x_test])
    np.save('data/test_vecs.npy',test_vecs)
    

•对句子中的所有词向量取均值,来生成一个句子的vec

def build_vector(text,size,wv):
    #创建一个指定大小的数据空间
    vec = np.zeros(size).reshape((1,size))
    #count是统计有多少词向量
    count = 0
    #循环所有的词向量进行求和
    for w in text:
        try:
            vec +=  wv[w].reshape((1,size))
            count +=1
        except:
            continue
        
    #循环完成后求均值
    if count!=0:
        vec/=count
    return vec

•训练SVM模型

训练就用SVM,sklearn库已经封装了具体的算法,只需要调用就行了,原理也挺麻烦,老师讲课的时候我基本都在睡觉,这儿就不装哔了。(想装装不出来。。😭)

    #创建SVC模型
    cls = SVC(kernel="rbf",verbose=True)
    #训练模型
    cls.fit(train_vecs,y_train)
    #保存模型
    joblib.dump(cls,"data/svcmodel.pkl")
    #输出评分
    print(cls.score(test_vecs,y_test))

•预测

训练完后也得到了训练好的模型,基本这个项目已经完成了,然后为了使看起来好看,加了个图形用户界面,看起来有点逼格,

from tkinter import *
import numpy as np
import jieba as jb
import joblib
from gensim.models.word2vec import Word2Vec

class core():
    def __init__(self,str):
        self.string=str

    def build_vector(self,text,size,wv):
        #创建一个指定大小的数据空间
        vec = np.zeros(size).reshape((1,size))
        #count是统计有多少词向量
        count = 0
        #循环所有的词向量进行求和
        for w in text:
            try:
                vec +=  wv[w].reshape((1,size))
                count +=1
            except:
                continue
        #循环完成后求均值
        if count!=0:
            vec/=count
        return vec
    def get_predict_vecs(self,words):
        # 加载模型
        wv = Word2Vec.load("data/model3.pkl")
        #将新的词转换为向量
        train_vecs = self.build_vector(words,300,wv)
        return train_vecs
    def svm_predict(self,string):
        # 对语句进行分词
        words = jb.cut(string)
        # 将分词结果转换为词向量
        word_vecs = self.get_predict_vecs(words)
        #加载模型
        cls = joblib.load("data/svcmodel.pkl")
        #预测得到结果
        result = cls.predict(word_vecs)
        #输出结果
        if result[0]==1:
            return "好感"
        else:
            return "反感"
    def main(self):
        s=self.svm_predict(self.string)
        return s

root=Tk()
root.title("情感分析")
sw = root.winfo_screenwidth()
#得到屏幕宽度
sh = root.winfo_screenheight()
#得到屏幕高度
ww = 500
wh = 300
x = (sw-ww) / 2
y = (sh-wh) / 2-50
root.geometry("%dx%d+%d+%d" %(ww,wh,x,y))
# root.iconbitmap('tb.ico')

lb2=Label(root,text="输入内容,按回车键分析")
lb2.place(relx=0, rely=0.05)

txt = Text(root,font=("宋体",20))
txt.place(rely=0.7, relheight=0.3,relwidth=1)

inp1 = Text(root, height=15, width=65,font=("宋体",18))
inp1.place(relx=0, rely=0.2, relwidth=1, relheight=0.4)

def run1():
    txt.delete("0.0",END)
    a = inp1.get('0.0',(END))
    p=core(a)
    s=p.main()
    print(s)
    txt.insert(END, s)   # 追加显示运算结果

def button1(event):
    btn1 = Button(root, text='分析', font=("",12),command=run1) #鼠标响应
    btn1.place(relx=0.35, rely=0.6, relwidth=0.15, relheight=0.1)
    # inp1.bind("<Return>",run2) #键盘响应

button1(1)
root.mainloop()




运行一下:
在这里插入图片描述
在这里插入图片描述

项目已经完成了,简单的实现了一下情感分析,不过泛化能力一般般,输入的文本风格类似与网上购物的评论那样才看起来有点准确,比如喜欢,讨厌,好,不好,质量,态度这些网店评论经常出现的词汇分析起来会很准,但是例如温柔,善良,平易近人这些词汇分析的就会很差。优化的话我感觉可以训练各种风格的样本,或集成学习多个学习器进行分类,方法很多,但是实现起来又是一个大工程,像我这最后一排的学生,还是去打游戏去咯。

项目中的训练样本,训练好的模型以及完整项目代码
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓

https://download.csdn.net/download/qq_45874897/12670913

  • 55
    点赞
  • 449
    收藏
    觉得还不错? 一键收藏
  • 30
    评论
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值