一、三大模型
1、预测模型
神经网络预测
灰色预测
时间序列预测
马尔科夫链预测
微分方程预测
Logistic 模型
拟合插值预测(线性回归)(不推荐)
应用领域:人口预测、水资源污染增长预测、病毒蔓延预测、竞赛获胜概率预测、月收入预测、销量预测、经济发展情况预测等在工业、农业、商业等经济领域,以及环境、社会和军事等领域中都有广泛的应用。
2、优化模型
规划模型(目标规划、线性规划、非线性规划、整数规划、动态规划)
图论模型
排队论模型
神经网络模型
现代优化算法
- 遗传算法
- 模拟退火算法
- 蚁群算法
- 禁忌搜索算法
应用领域:快递员派送快递的最短路径问题、水资源调度优化问题、高速路口收费站问题、军事行动避空侦察的时机和路线选择、物流选址问题、商区布局规划等各个领域。
优化模型:偏难。
切割木料、地板,使损耗最低、利润最高。
自然水管道铺设问题:图论模型(迪杰斯特拉算法 Dijkstra、克鲁斯卡尔算法 Kruskal)
3、评价模型
模糊综合评价法
层次分析法
聚类分析法
主成分分析评价法
灰色综合评价法
人工神经网络评价法
应用领域:某区域水资源评价、水利工程项目风险评价、城市发展程度评价、足球教练评价、篮球队评价、水生态评价、大坝安全评价、边坡稳定性评价。
评价模型偏简单。
二、十大常用算法
1、蒙特卡洛算法
即随机性模拟算法,通过计算机模拟生成大量数据以此来检验自己模型的正确性,可以说是每次比赛都可以套用的方法。
2、数据预处理算法(Matlab)
数据拟合、参数估计、插值
3、规划类算法(Lingo)
线性规划、整数规划、多元规划、二次规划
4、图论算法
最短路、网络流、二分图
5、数据结构算法
动态规划、回溯搜索、分治算法、分支定界
6、现代优化算法
模拟退火、神经网络、遗传算法
7、暴力算法
网格算法、穷举法
8、连续离散化方法
将连续的数据转化为离散的数据,从而使差分代替微分、求和代替积分
9、图像处理算法(Matlab)
将图像转为矩阵处理
10、数值分析算法
方程组求解、矩阵运算、函数积分