fftfreq函数的用法

本文介绍了如何利用numpy和scipy中的fftfreq函数来计算傅里叶变换后的频率轴,特别是在处理实际信号时的应用。通过示例展示了fftfreq函数的使用方法,强调了其在自动生成频率范围上的便利性,特别是在处理不同长度信号时的适应性。在绘制频谱图时,需要注意取一半的频率值,并解释了频谱图中负频率的含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fftfreq函数的用法:

from scipy.fftpack import fftfreq
from numpy.fft import fftfreq #numpy和scipy都有fftfreq函数
signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
fourier = np.fft.fft(signal)
n = signal.size
timestep = 0.1
freq = np.fft.fftfreq(n, d=timestep)
freq
    array([ 0.  ,  1.25,  2.5 , ..., -3.75, -2.5 , -1.25])

我们在画频谱图的时候需要对信号做傅里叶变换,x轴对应的是频率范围
使用fftfreq的好处就是可以自动生成频率范围,而不用去考虑信号长度是奇数还是偶数的问题。
处理实际信号的时候这样使用:fftfreq(len(signal),1/samplerate),即fftfreq(信号长度,1/采样率)。注意这里的信号长度是信号做傅里叶变换之后的原始长度(画频谱图的时候则取一半长度),得到频率范围后发现频率有负值,这时同样对频率取一半即可。

频谱图如下: 在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值