np.fft.fftfreq()函数

文章介绍了如何使用numpy库中的fftfreq函数计算采样频率,并与fft函数结合,展示了离散傅里叶变换中频率和幅值的关系。重点强调了函数的参数含义和配合使用时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单使用

返回离散傅里叶变换的采样频率

import numpy as np
a = np.fft.fftfreq(10, 1)

a
==>array([ 0. ,  0.1,  0.2,  0.3,  0.4, -0.5, -0.4, -0.3, -0.2, -0.1])

可以看到后面一半是负频率,一般只用到前面一半

函数原型

def fftfreq(n, d=1.0):

n: 数组长度
d: 输入信号的采样周期,例如1/16000或1/32000

np.fft.fft()函数一般会配合着np.fft.fftfreq()函数使用
注意fftfreq的入参n要与fft返回的数组长度相同

fft = np.fft.fft(np.arange(10))

fft
==>array([45.+0.00000000e+00j, -5.+1.53884177e+01j, -5.+6.88190960e+00j,
       -5.+3.63271264e+00j, -5.+1.62459848e+00j, -5.-1.33226763e-15j,
       -5.-1.62459848e+00j, -5.-3.63271264e+00j, -5.-6.88190960e+00j,
       -5.-1.53884177e+01j])

与fftfreq返回的数组对应,表示相应频率对应的幅值

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值